Sahel and West Africa Club Forum, 26-27 October 2015, Expo Milano 2015, Italy

Climate-smart agriculture

RESEARCH PROGRAM ON Climate Change, Agriculture and Food Security

to face climate change and variability in West Africa

futurerth

Dr Robert Zougmoré Regional Program Leader West Africa

Climate variability & change : facts!

Length of growing season is likely to decline..

To 2090, taking 18 climate models

Four degree rise

Length of growing period (%)

Thornton et al. (2010) Proc. National Academy Science

How can farmers achieve food security under a variable and changing climate?

We need climate-smart agriculture actions at all levels !

 sustainably increases productivity and enhances the achievement of national food security and development goals
Increases resilience (adaptation)
reduces greenhouse gases where possible Farm and community: climate-smart practices, institutions

National and regional: enabling policies, extension, support, research, finance

Climate-smart agriculture happens at multiple levels

Global: climate models, international agreements, finance

Climate information for better planning and management in Senegal

Climate information (indigenous & scientific) help to improve planning and management of farms by smallholder farmers

Climate risk management in Kaffrine : using probabilistic seasonal forecasting

- Since 2011: piloting communication of downscaled seasonal forecasts and; evaluating impact on farmers' management and livelihoods (CIS design + GTP)
- 2013: testing Kaffrine protocol in 3 more regions (Thies, Louga and Diourbel)

Using climate information for early warning

Partnership for Senegal Early warning system

COMMUNICATION & COMMUNICATION partnership with union of rural radio (URAC)

Climate information affects inputs use and farm productivity of cowpea and sesame sectors in Burkina Faso

- (i) 110 experimental farmers (11 villages) who are exposed to climate information
- (ii) 60 controlled farmers (6 villages) who are not exposed to climate information.

Cowpea Sesame Difference Exposed Not exposed Difference Exposed Not exposed Number of farmers 56 32 55 29 -28** -5.23* Local seed (kg/ha) 17 45 11 6 7 6** 7 Improved seed (kg/ha) 1 8 Organic manure (kg/ha) 15 23 42 -34* -8 8 Fertilizers (kg/ha) 30 31 -0.40 23 19.04* 4 Insecticides (I/ha) 2.45 3.03 -0.57 1.27 0.47 0.80 Area (ha) 0.26 0.22 0.04 0.34 0.29 0.05

Effect of climate information use on farm inputs

RESEARCH PROGRAM ON Climate Change,

Agriculture and

Food Security

CCAFS

CGIAR

* Significant at 10%; ** significant at 5% level.

Climate information affects inputs use and farm productivity of cowpea and sesame sectors in Burkina Faso

Effect of climate information use on farm productivity

	Cowpea			Sesame		
	Exposed	Not exposed	Difference	Exposed	Not exposed	Difference
Number of farmers	56	32		55	29	
Area (ha)	0.26	0.22	0.04	0.34	0.29	0.05
Yield (kg/ha)	875	683	193*	544	568	-23.59
Gross product (F CFA /ha)	102 613	108 585	-5 973	416 986	495 258	-78 272
Cost of inputs (F CFA /ha)	40 169	55 669	-15 499	33 599	32 521	1 077
Gross margin (F CFA /ha)	62 443	52 916	9 527	383 387	462 395	-79 008

* Significant at 10%; ** significant at 5% level.

Farmers exposed to climate information have changed their farm practices based on the information they received. Changes in agricultural inputs used increase farm productivity including yield and gross margin.

To conclude:

Better preparedness

Better climate science and understanding of climate
Forecast based planning and management (allocation of land, selection of crops, varieties and investments on inputs)

Better responses

Planting primed seed/transplanting
Contingency plans
Water harvesting and Irrigation

Better recovery

Safety nets/InsuranceEmployment/migration

 Developing good partnership to scale-up and achieve impact to benefit end-users