

Joining Standards Organizations: The Role of R&D Expenditures, Patents, and Product-Market Position

Justus Baron (Northwestern University)
Cher Li (University of Nottingham)
Shukhrat Nasirov (De Montfort University)

OECD IPSDM Conference, EU IPO, 2018

Background and Research Question

- > Complex and system innovation requires collaborative efforts
- > Standards are developed in a complex ecosystem of private, voluntary and open organizations
- > Standards organizations (SO): formal standards development organizations (SDO); organizations that *only* promote fully developed standards; certification bodies; other informal industry-based consortia etc.
- ➤ Motivations of firm involvement in standards development: learning, problemsolving, value appropriation, influencing technology, anticipating regulation and networking (Leiponen, 2008; Vasudeva et al., 2014; Delcamp and Leiponen, 2014; Baron et al., 2014)
- > We study firm-level determinants of intensity of SO participation

Our Key Findings & Contributions

- ➤ Most comprehensive and robust evidence to date on participation in ICT standardization
- Consolidated longitudinal data on the world's 2,000 largest R&D performers matched with membership info from 180 standards organizations
- ➤ Quantifying the intensity of participation in standards development
- ➤ Robust evidence on the roles of R&D and product-market position in a firm's involvement in SOs
- ➤ Causal effect of patent-position on SO participation
- ➤ Impact of R&D bolstered by strong patenting intensity and product-market positions

Our Key Findings & Contributions – cont'd

- ➤ Positive interaction between patenting intensity and R&D: causal link identified using exogenous variation induced by policy change ("patent boxes")
- Critical role of a firm's product-market position in incentivizing participation: e.g., trademarking intensity, brand value and number of standard-compliant end product models
- ➤ Mechanisms: interaction between R&D and distinct IP assets contingent on SO types: patents only matter for participation in SDOs potentially subject to SEPs

Data Sources

- ➤ Searle Center Database on Technology Standards and Standard Setting Organizations (SCDB): membership data in 180 standards organizations, 299,652 membership records, from 1997-2015 (Baron and Spulber, 2018)
- ➤ Membership obligations: disclosure of potential SEPs and making SEP licenses available to standards implementers
- ➤ OECD Database on IP Bundles: R&D expenditures, IP bundles, and financial info for the world's top 2,000 R&D investors: consolidated IP statistics accounting for 66% of all IP5 patent families, trademark ownership more dispersed (Dernis et al., 2015; Daiko et al., 2017)

Sample Construction

- > OECD IP Bundles (2015 & 2017): 1,633 firms with IP statistics 2010-2014
- > We use industries in *OECD* data most relevant to ICT standardization
- > Sample 1 (509 firms in 6 industries): > 15% firms have declared >1 SEPs; > 10% firms listed as selling standard-compliant products; average no. of SO memberships per firm > 10

Electrical and Electronic Equipment, Consumer Electronics, Broadcasting and Entertainment, Fixed Line Telecommunications, Mobile Telecommunications, Technology Hardware and Equipment

➤ Sample 2 (832 firms in 11 industries): 49 of top 50 firms declaring SEPs, all of the top 50 SO members, 47 of top 50 producers of standard-compliant products

Empirical Analysis

- > Multivariate analysis of determinants of participation in standards organizations
- ➤ Explanatory variables: *ln* R&D expenditure, Patent_high, Trademark_high (above-median patent- and trademark- intensities), Patent/Trademark count, brand value, product count
- > Control variables: employment, sales, capital intensity (firm and year fixed effects)
- ➤ Baseline model + Interaction model (interaction between R&D and IP positions)
- ➤ Panel fixed-effects regressions + controlling for regional trends (interaction terms between time and six regional dummies, incl. N. America, Europe, China, Japan, South Korea and other)

Nottinghai Baseline Models (DV – In Membership count; Fixed Effects)

Independent variables	Model 1	Model 2	Model 3	Model 4	Model 5
lnRD	0.059***	0.033*	0.027	0.017	0.018
	(0.006)	(0.069)	(0.173)	(0.330)	(0.304)
PT_High#lnRD		0.134***	***************************************	0.096*	0.089
		(0.006)		(0.059)	(0.215)
TM_High#lnRD			0.136***	0.095**	0.089*
			(0.002)	(0.036)	(0.081)
PT_High#TM_High#lnRD					0.014
					(0.885)
lnEmployees	0.062**	0.040	0.042*	0.032	0.033
	(0.012)	(0.113)	(0.085)	(0.201)	(0.175)
lnSales	0.036**	0.032**	0.030**	0.029**	0.029**
	(0.011)	(0.011)	(0.018)	(0.018)	(0.018)
lnCapital_Int	0.158*	0.069	0.076	0.037	0.038
	(0.084)	(0.460)	(0.417)	(0.702)	(0.682)
Constant	-39.591	-21.742	-9.661	-5.843	-6.214
	(0.106)	(0.361)	(0.680)	(0.801)	(0.790)
Year dummies	Yes	Yes	Yes	Yes	Yes
Regional trends	Yes	Yes	Yes	Yes	Yes
R-squared	0.087	0.096	0.096	0.100	0.100
Observations	2,233	2,233	2,233	2,233	2,233
Number of companies	405	405	405	405	405

Baseline Models – Industry Heterogeneity

Patent Boxes Analysis (Difference-in-Difference)

Independent variables	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
box_active	0.228***	0.186**	0.232***	0.186**	0.259***	-0.152*	0.109	-0.126
	(0.003)	(0.024)	(0.006)	(0.024)	(0.002)	(0.097)	(0.256)	(0.209)
box#av_RD		0.000	-0.000*	0.000	-0.000	-0.000	0.000	-0.000
ga assas and analysis		(0.140)	(0.057)	(0.320)	(0.108)	(0.962)	(0.188)	(0.990)
box#av_PT			0.001***		0.001***			
			(0.001)		(0.000)			
$box#av_TM$				0.000	-0.009**			
1 // D/D II: 1				(0.983)	(0.030)	1 000***		1 000***
box#PT_High						1.002***		1.023***
box#TM_High						(0.000)	0.181	(0.000) -0.079
box# 1 M_High							(0.123)	(0.516)
Constant	-33.318**	-31.459*	-38.583**	-31.460*	-41.631**	-9.348	-25.527	-11.466
Constant	(0.044)	(0.058)	(0.021)	(0.058)	(0.013)	(0.577)	(0.134)	(0.502)
	(0.011)	(0.000)	(0.021)	(0.000)	(0.010)	(0.011)	(0.101)	(0.002)
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Regional trends	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R-squared	0.459	0.459	0.460	0.459	0.460	0.464	0.459	0.464
Observations	8,483	8,483	8,483	8,483	8,483	8,483	8,483	8,483
Number of companies	499	499	499	499	499	499	499	499

Patent Boxes Analysis, Diff-in-Diff, by SO Type

A										
Independent variables	Model 1 Standards	Model 2 developer	Model 3 Pron	Model 4 noter	Model 5 Ot	Model 6 her	Model 7 SI	Model 8 EP	Model 9 No	Model 10 SEP
box_active	-0.221***	-0.082	0.054	-0.017	0.226***	0.217	-0.026	0.243**	0.052	-0.172
	(0.006)	(0.545)	(0.501)	(0.900)	(0.007)	(0.125)	(0.701)	(0.031)	(0.793)	(0.611)
box#av_RD	-0.001**	-0.002*	-0.000	0.000	-0.000	0.000	-0.001***	-0.003***	-0.000	0.002
Section (Control of the Control of t	(0.011)	(0.051)	(0.113)	(0.855)	(0.213)	(0.990)	(0.002)	(0.001)	(0.408)	(0.504)
box#av_PT	0.002**	0.000	0.000	0.001	-0.001	-0.000	0.002***	-0.001	-0.000	0.002
Harris Harris Francis	(0.048)	(0.976)	(0.931)	(0.618)	(0.609)	(0.861)	(0.005)	(0.472)	(0.899)	(0.555)
box#av_TM	0.009**	0.014**	0.010***	0.016**	-0.006	-0.009	-0.006*	-0.010**	0.002	0.005
I be a delicated and the second	(0.017)	(0.026)	(0.009)	(0.010)	(0.159)	(0.147)	(0.093)	(0.046)	(0.824)	(0.722)
box#av_RD#av_PT		0.000*	,	-0.000		-0.000		0.000***		-0.000
		(0.090)		(0.742)		(0.743)		(0.005)		(0.419)
box#av_RD#av_TM		-0.000		-0.000		0.000		0.000		-0.000
(22)		(0.385)		(0.253)		(0.482)		(0.213)		(0.770)
Constant	28.043*	27.364*	16.786	16.974	18.925	19.038	11.871	10.827	21.782	22.669
	(0.066)	(0.072)	(0.271)	(0.266)	(0.233)	(0.231)	(0.351)	(0.394)	(0.568)	(0.552)
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Regional trends	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R-squared	0.095	0.097	0.030	0.031	0.023	0.023	0.037	0.041	0.052	0.052
Observations	2,436	2,436	2,436	2,436	2,436	2,436	2,436	2,436	2,436	2,436
Number of companies	406	406	406	406	406	406	406	406	406	406

Nottingham Product-Market Position: Additional Mechanisms

Independent variables	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
lnRD	0.060***	0.060***	0.056***	0.017	0.016	0.014
Top500	(0.005)	(0.006) 0.026 (0.234)	(0.009) -0.269* (0.073)	(0.353)	(0.369)	(0.437)
Prod_count	0.007** (0.014)	Y 2	A			
$PT_High\#lnRD$				0.091*	0.097*	0.108*
TM_High#lnRD				(0.090) 0.097**	(0.078) 0.101**	(0.062) 0.090*
Top500#lnRD			0.046**	(0.034) 0.009	(0.034)	(0.069) 0.196**
Prod_count#lnRD			(0.050) 0.001**	(0.871) 0.002***		(0.015)
Producer#lnRD			(0.013)	(0.003)	0.194	
PT_High#Top500#lnRD					(0.127)	-0.227** (0.017)
$TM_High\#Top500\#lnRD$						-0.026 (0.778)
$PT_High\#Producer\#lnRD$					-0.157 (0.244)	(0.110)
$TM_High\#Producer\#lnRD$	10.00	10010			-0.189** (0.036)	

Key Takeaways

- ➤ In contrast to earlier studies (e.g., Blind and Thumm, 2004; Rauber, 2014), we found robust positive effect of R&D on standards development
- ➤ R&D effect contingent upon appropriation mechanisms: patent-centric and product-centric appropriation strategies
- ➤ R&D and patents as strategic complements in standards development: more support for 'value appropriation' mechanism v.s. legal protection against misappropriation
- ➤ Complementary downstream capabilities important: trademarks, brand value and product counts have independent positive effects on SO participation of R&D-intensive firms
- ➤ Implications for standards and IPR policy