Varieties of the NIS & RIS (National/Regional Innovation Systems) around the world:

Measurement by Patent data and Policy implications

Keun Lee (with Jongho Lee)

Professor, Seoul National University; Director of Center for Economic Catch-up Editor, Research Policy Council Member, World Economic Forum

Variety of Innovation systems (IS): A Schumpeterian Concept

National Innovation Systems = NIS Sectoral = Sectoral SI (SSI) Regional = Regional IS (RIS) firm = Corporate IS (CIS) Individual /Inventor (IIS?)

Lundvall (1992):

NIS (national Innovation system) = elements and relationships

which interact in the production, diffusion and use of knowledge
 rooted inside the borders of a nation state.

 -> Differences in NIS determines competitiveness of nations, sectors and firms.
 => System failure cf) market failure Innovation systems at 3 Levels: country; Sector; firm

=> 2014 Schumpeter Prize

Schumpeterian Analysis of Economic Catch-up

Knowledge, Path-Creation, and the Middle-Income Trap?

KEUN LEE

清華大学出版社

于飞 陈劲 ◎ 译

CAMBRIDGE

5 Key Variables to measure the NIS and RIS

Intra-national creation and diffusion of Knowledge (vs. reliance on foreign sources)

Balanced vs. Concentration

of knowledge creation (by assignees)

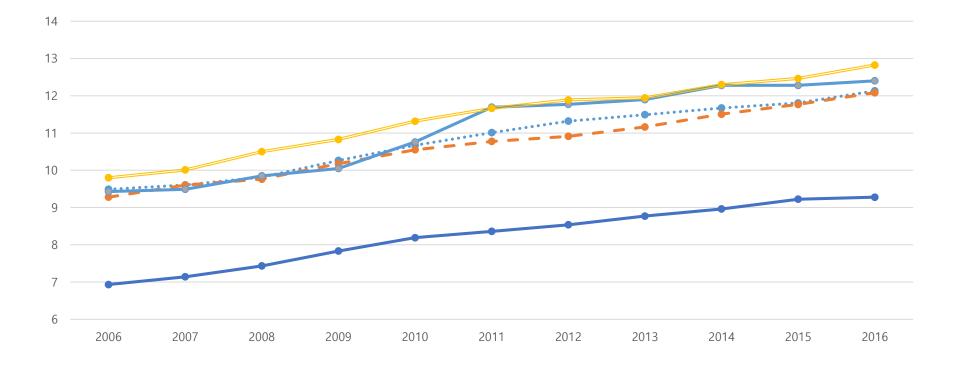
Technological specialization 1 (short vs. long cycle technologies)

Knowledge Combination (by citing and combining widely) (formerly called originality of technologies; Convergence of knowledge)

> **Technological Diversification** (Wide vs. Deep in patent portfolio)

NIS (national Innovation systems)

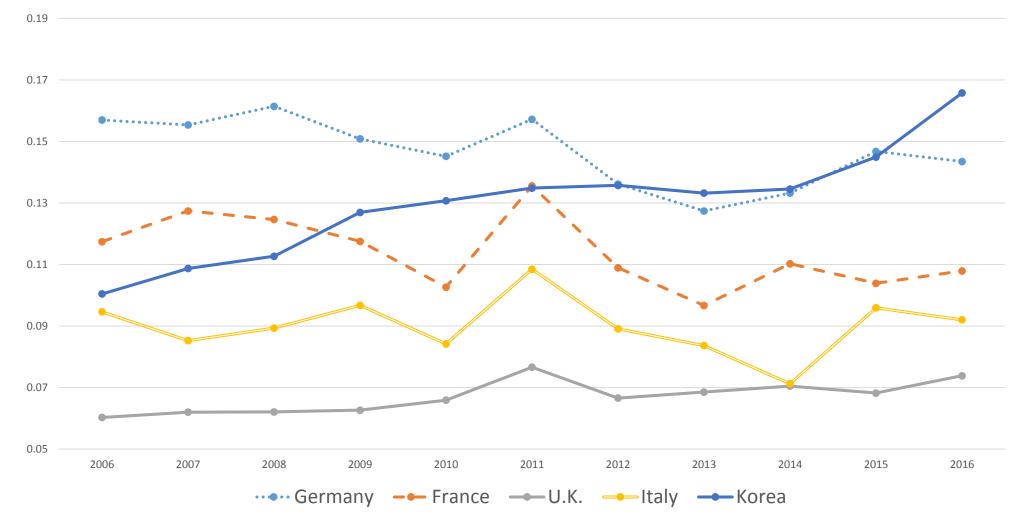
in

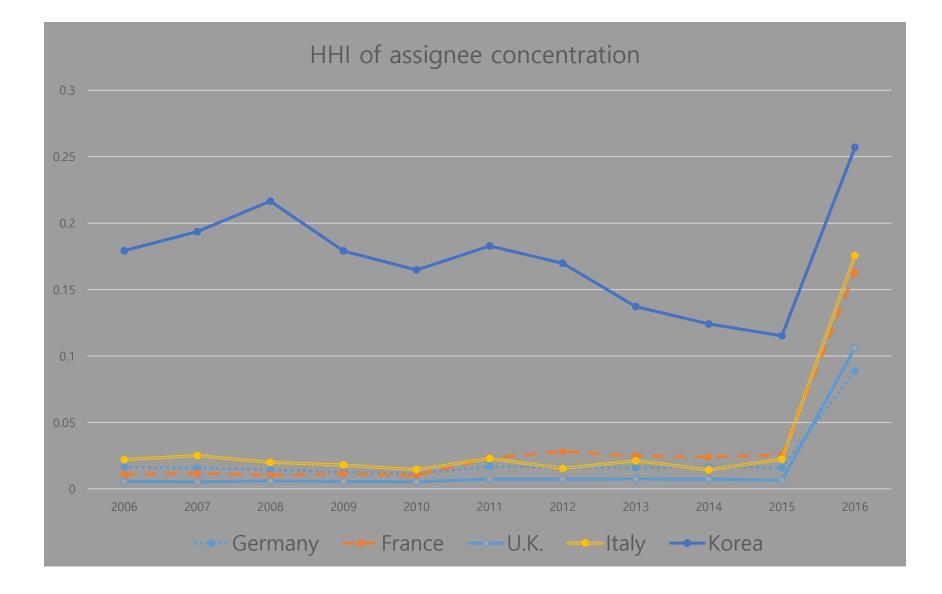

Italy, Germany, France and UK; Compared with Korea

Data

- USPTO Patent Grant Red Book (Full Text, 1976~2017, http://patents.reedtech.com/pgrbft.php)
 - Information in the database:
 - patent number, series code and application number, type of patent, filing date, title, issue date, inventor information, assignee name at time of issue, foreign priority information, related US patent documents, classification information, US and foreign references, attorney, agent or firm/legal representative
- **Data cleaning:** using NBER DB: 1963-1999, 1976-2006 / Lai et al.(2011) / Kogan et al.(2015)

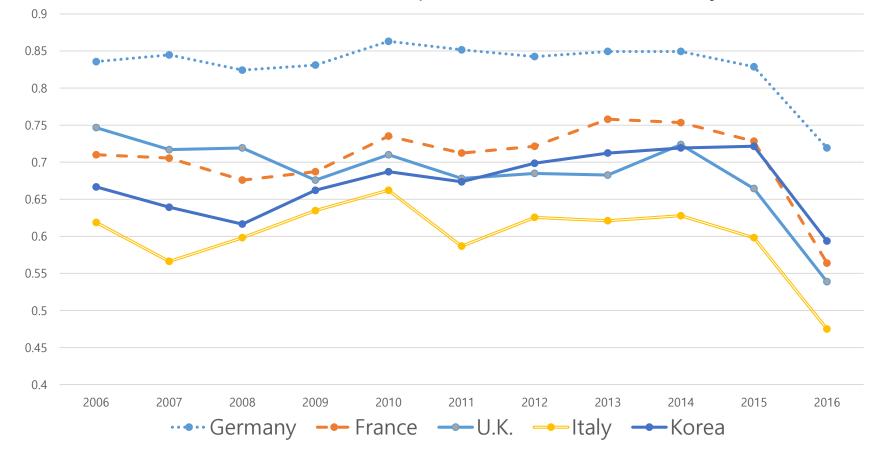
Italy = longest Cycle time (machineries) = good for profitability Korea = shortest cycle time = vehicle for late entry and catch-up


average Cycle time

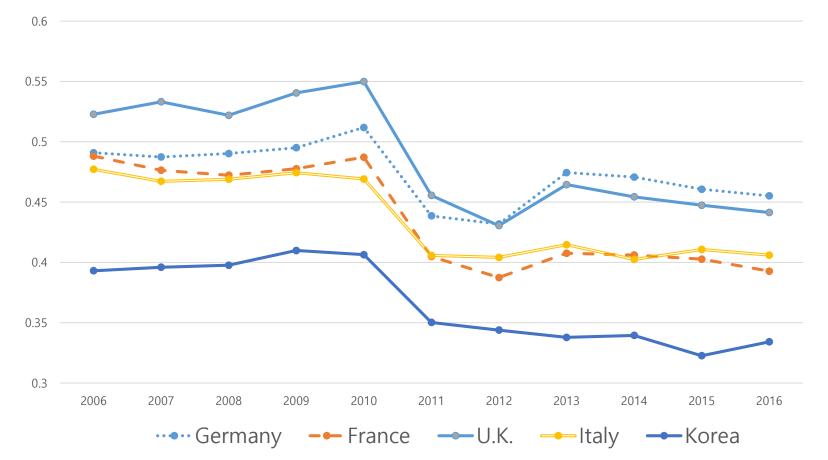

··•··Germany −← France → U.K. → Italy → Korea

UK = lowest localization = highest internationalization Germany = high; Korean rapid catch-up

Intra-national diffusion of knowledge =localization



Concentration of Innovation in Korea vs. Balanced in Europe


Germany = most diversified; Italy = least diversified (ready for 4IR?)

Tech. diversification (No. of patented sectors divided by 438)

Combination of Knowledge (from wider fields) = Originality (readiness for 4IR): UK, Germany highest; Korea lowest:

Knowledge combination/ Originality

Summary of NIS by countries

1) Italy: longest cycle time-based technologies (good for profit & growth) but low degree of tech. diversification, lower degree of knowledge localization, and medium level of combination

2) UK: highest originality and longer cycle tech

but less diversified; lowest intra-national diffusion. -> maybe, better to try to increase intra-national diffusion (which is lower than Korea); a bit more diversification.

3) Germany: highest diversification and highest localization relatively high combination and medium cycle time

4) Korea: highest localization and concentration

nationalistic and big business led NIS
 has still yet to catch up in terms of longer cycle tech, diversification,
 less concentration (too much by Samsung; too Few by SMEs);

5) France = Always in the middle; no clear-cut distinction

Country's Readiness for 4th IR

1) Korea

short cycle-tech & Big business based catch-up mode of NIS; -- low readiness for 4th IR

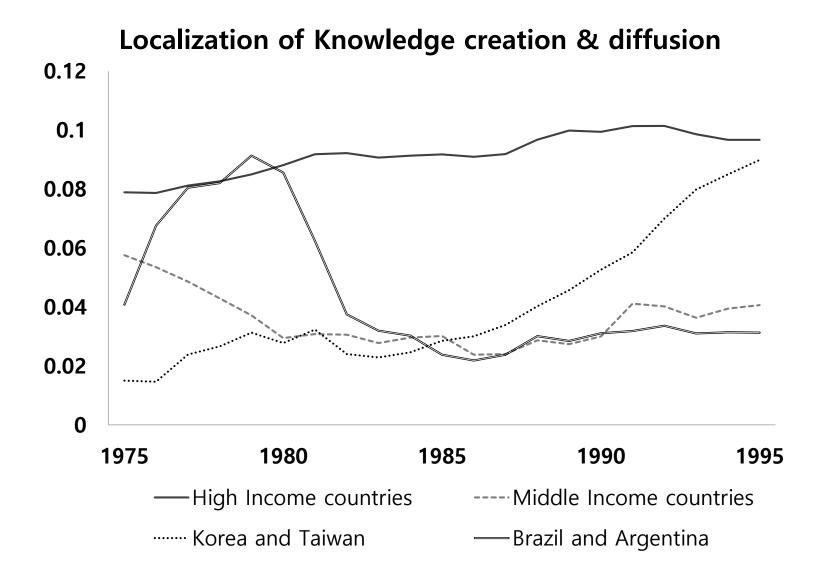
(lowest combination; medium diversification; lower fusion)

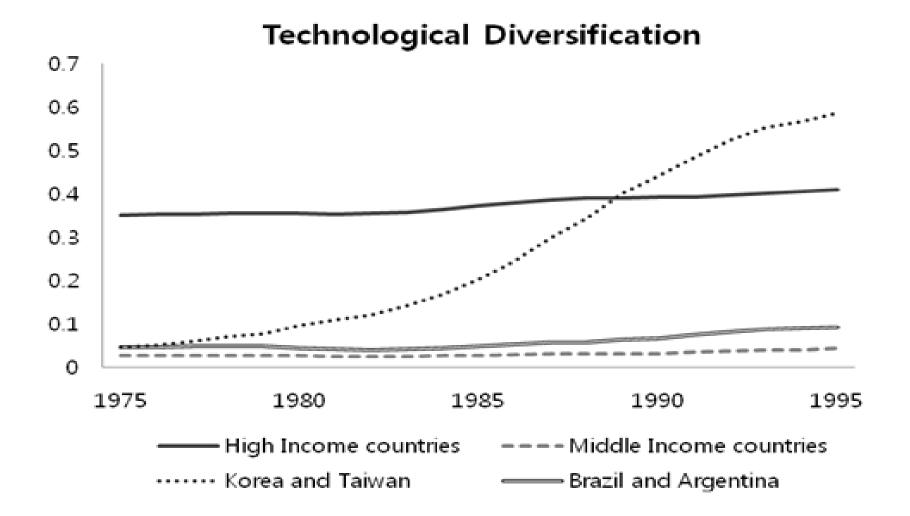
2) Italy = long cycle tech. and Medium sized firm based NIS ; good basis for profitable growth; but lower readiness for 4th IR (low combination and lowest diversification)

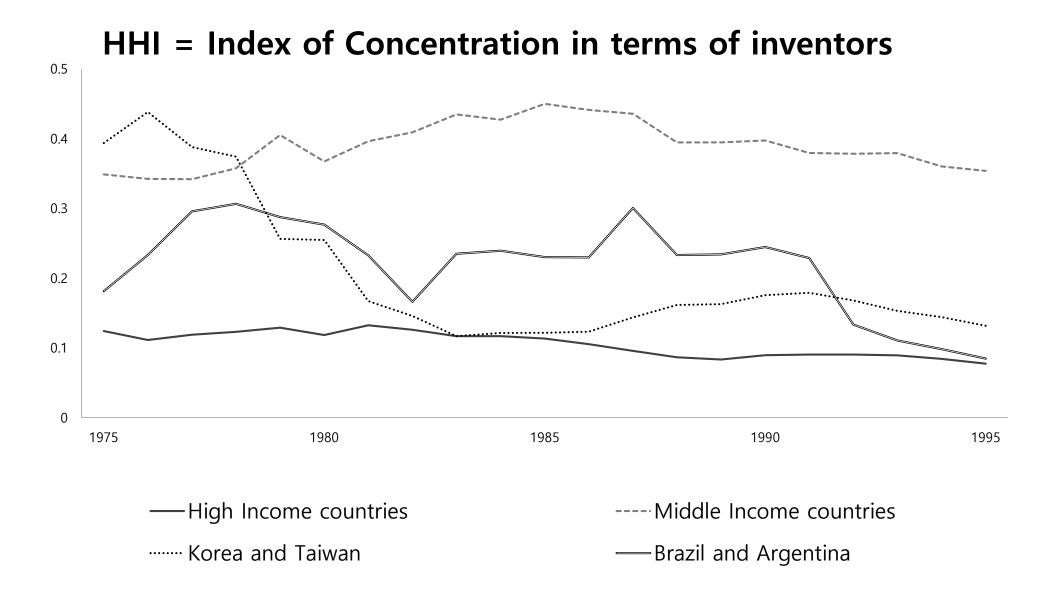
- 3) Germany = best ready for 4th IR (highest diversification; high combination and fusion)
- 4) UK = ready for 4IR with highest combination but needs to be more diversified

from NIS to Econ Growth/Catch-up at 3 levels

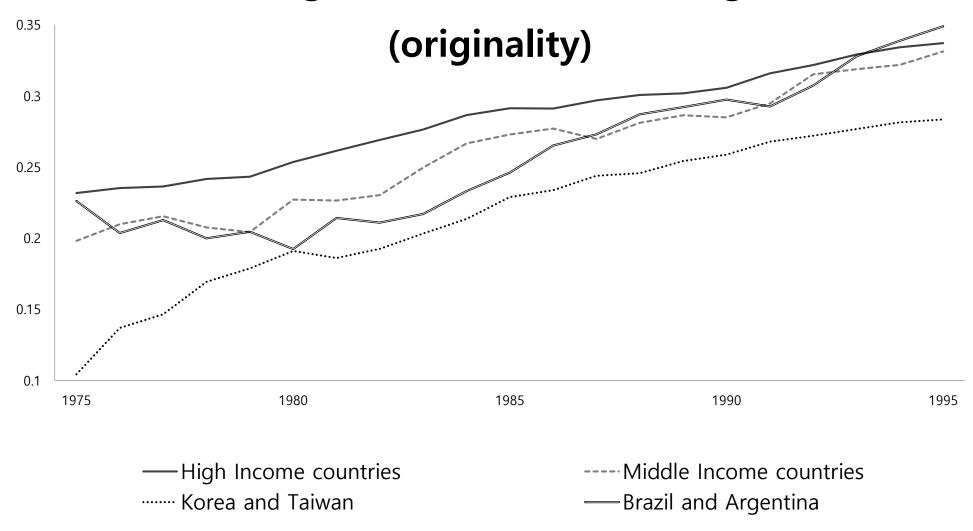
Schumpeterian Analysis of Economic Catch-up

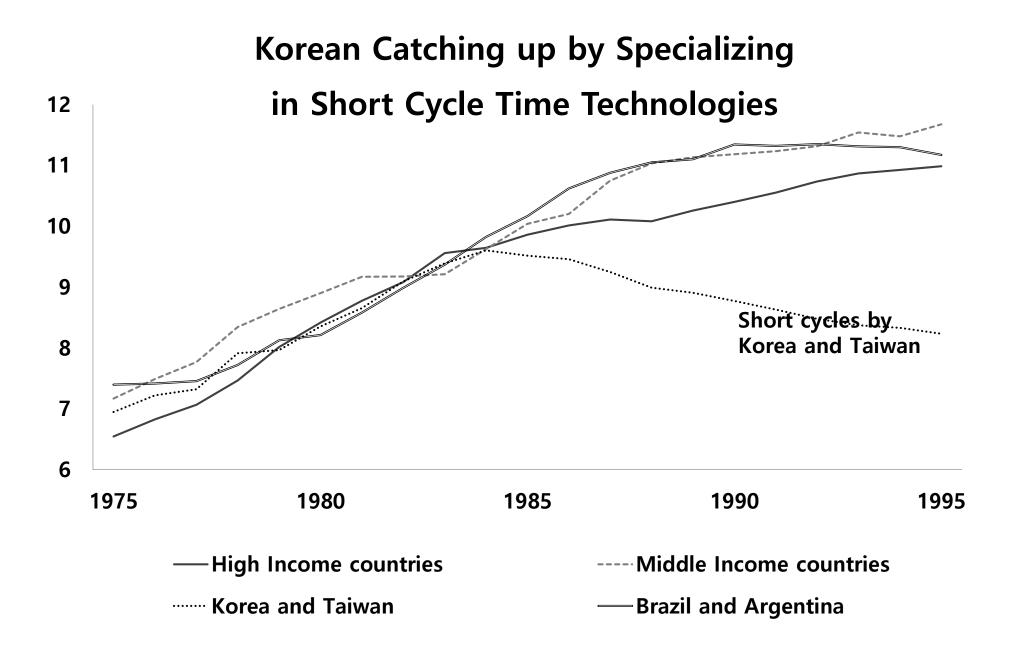

Knowledge, Path-Creation, and the Middle-Income Trap?

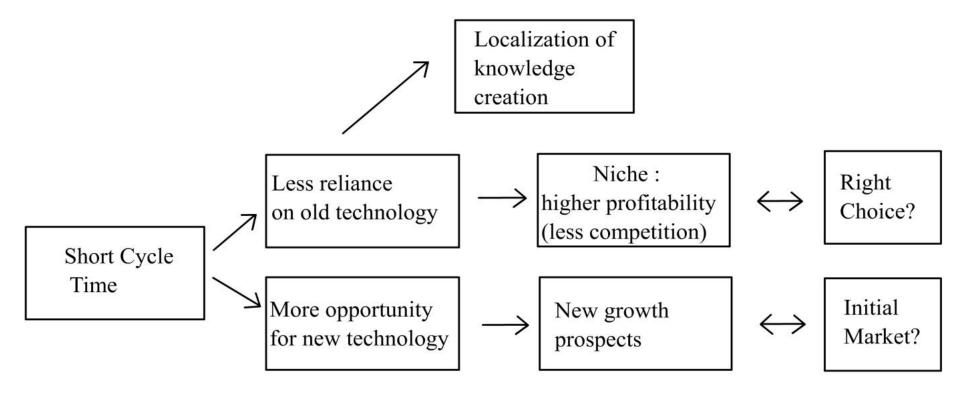

KEUN LEE


- Country: What determines catching-up growth:
 -> per capita income growth
- 2) Sector: Why easy to catch up in some sectors; why not in others ?
 - -> Country's US Patent share in sectors
- 3) Which the CIS (corporate innovation system) a good fit for catching up;
 - sales growth, profitability, firm value, productivity
 - => different question
 - -> same answers = knowledge variables

Intra-national Citation in Patents (~self-citation)




Tech. Diversification = No of sector with patents / 417 cf) 3 digit in USPTO


knowledge combination/Convergence

Getting into Short cycles -> rapid localization -> Domestic Value chains & diversification

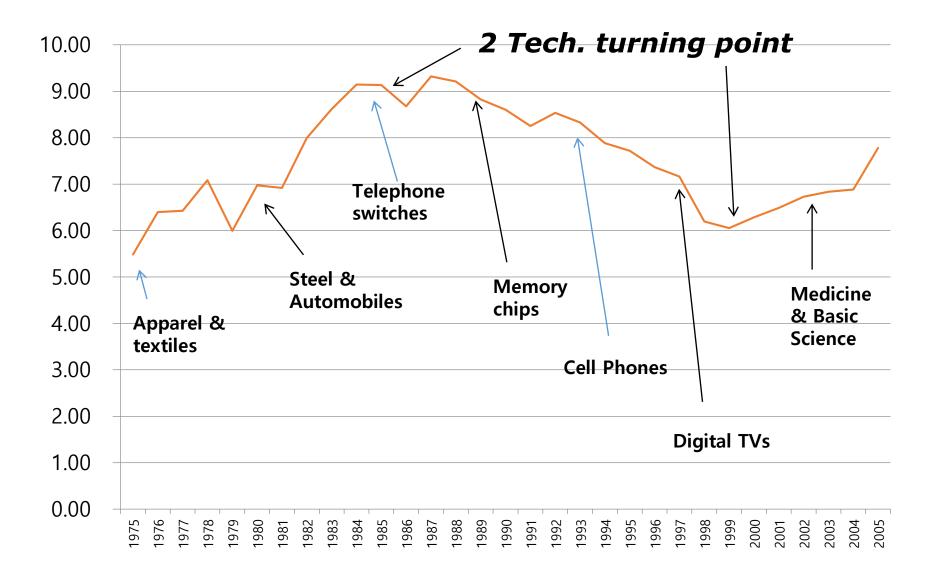
Figure 6-2 : Criterion of Technological Specialization - Why the Sectors of Short Cycle Matter

Advantages

Top 10 Classes of G5 vs Korea-Taiwan ->no overlap

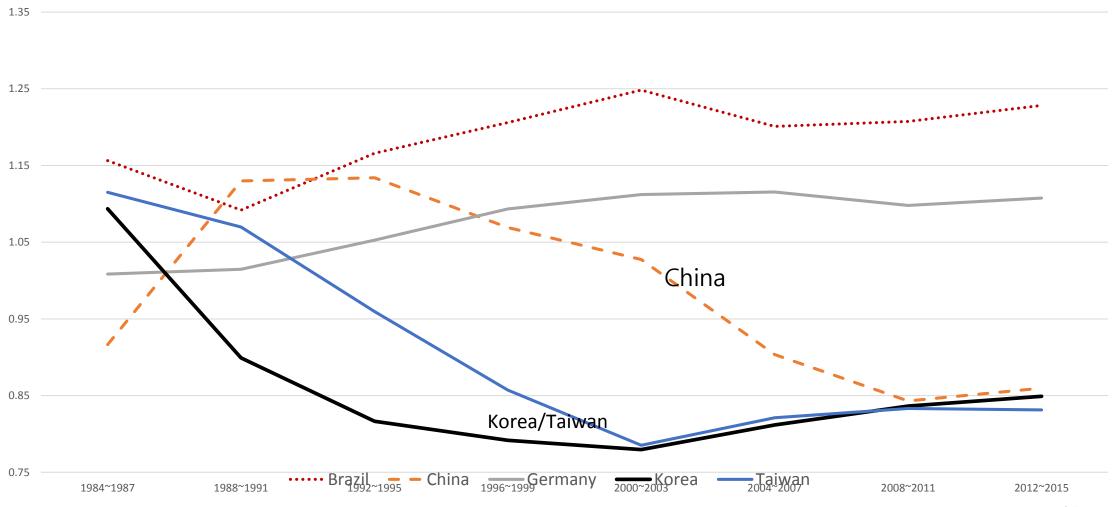
G5	Class	Class Name	Patent
01033			count
1	514	Drug, Bio-Affecting and Body Treating Compositions	10349
2	428	Stock Material or Miscellaneous Articles	3883
3	73	Measuring and Testing	3789
4	123	Internal-Combustion Engines	3479
5	424	Drug, Bio-Affecting and Body Treating Compositions	3389
6	210	Liquid Purification or Separation	2853
7	435	Chemistry: Molecular Biology and Microbiology	2852
8	250	Radiant Energy	2639
9	264	Plastic & Nonmetallic Article Shaping or Treating	2349
10	324	Electricity: Measuring and Testing	2325

Korea-	Class	Class Name					
Taiwan							
1	438	Semiconductor Device Manufacturing: Process	1189				
2	348	Television	712				
3	439	Electrical Connectors	408				
4	257	Active Solid-State Devices (Transistors, Solid-State Diodes)	374				
5	362	Illumination	374				
6	280	Land Vehicles	355				
7	365	Static Information Storage and Retrieval	346				
8	70	Locks	340				
9	360	Dynamic Magnetic Information Storage or Retrieval	313				
10	482	Exercise Devices	311				


Regressing growth onto National Innovation systems: Asian 4 as benchmark (Lee 2013)

	Asian 4	High Income	middle Inc.	World
Tech cycle time	(-)*	(+)*	(+)*	(+)*
Localization of knowledge	+	(+)*	+	(+)*
Originality	+	+	+	+
HH: inventor concentration	(-)*	(-)*	(-)*	(-)*
Asian 4 Dummy		(+)*	(+)*	(+) *

Controls: Initial income, Population, Investment, secondary enrollment


Shorter cycle leading to growth in Asian 4

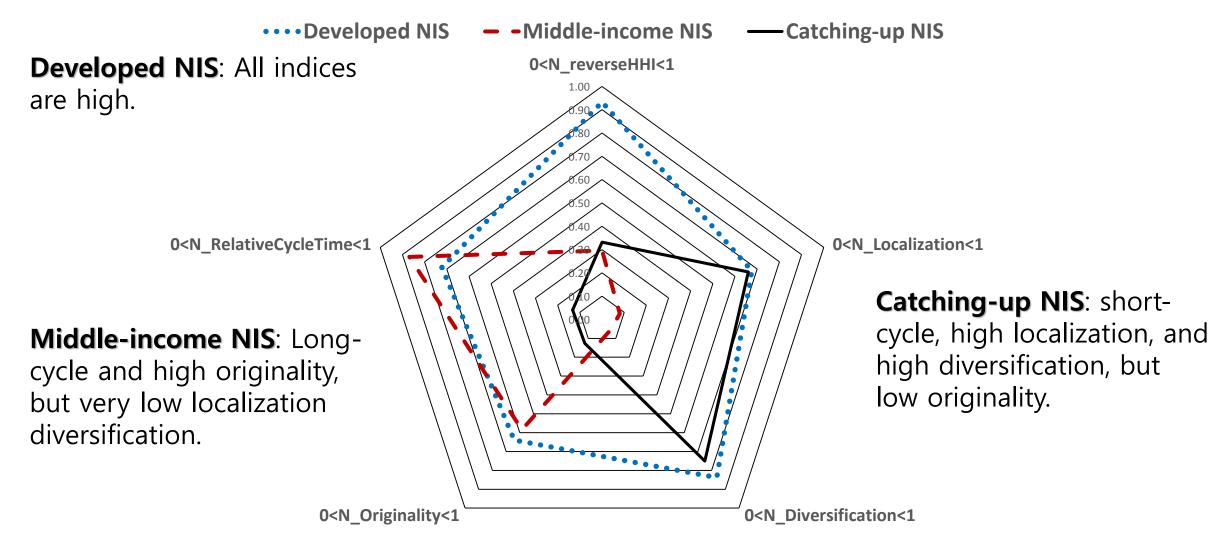
Korean Detour from Short to long cycle technologies 1st in the mid 80s: to short cycle sectors 2nd in the 2000s: to long cycle sectors; ex. Samsung's biosimilar

Similar detour from short to long cyles in China, but not in Brazil

Table Period average cycle time of technologies

NIS around the world and their clustering and dynamic change over tme

				<u></u>		
	① 1-HHI	② Localization	③ Diversification	④ Knowledge combination	چ Relative Cyc <mark>le Time</mark>	NIS5 =①+②+③+④+⑤
Silicon Valley	<mark>0.99</mark>	<mark>0.69</mark>	<mark>0.63</mark>	<mark>0.51</mark>	<mark>0.87</mark>	<mark>3.69</mark>
United States	0.99	0.25	0.94	0.50	1.00	3.69
Japan	0.98	0.41	0.87	0.35	0.94	3.55
Germany	0.98	0.14	0.84	0.46	1.11	3.53
United Kingdom	0.99	0.07	0.69	0.45	1.16	3.36
France	0.97	0.11	0.73	0.40	1.08	3.31
Italy	0.98	0.09	0.61	0.41	1.16	3.25
Israel	0.99	0.07	0.43	0.50	1.04	3.04
Denmark	0.97	0.08	0.37	0.43	1.17	3.02
Norway	0.99	0.08	0.27	0.48	<u>1.20</u>	3.02
<mark>Taiwan</mark>	<mark>0.97</mark>	<mark>0.13</mark>	0.67	<u>0.33</u>	<mark>0.83</mark>	2.93
South Korea	<mark>0.85</mark>	<mark>0.14</mark>	<mark>0.71</mark>	<mark>0.34</mark>	<mark>0.85</mark>	<mark>2.88</mark>
Sweden	0.82	<u>0.10</u>	0.57	<u>0.39</u>	<u>0.99</u>	<u>2.87</u>
China	<mark>0.94</mark>	0.05	0.64	<mark>0.33</mark>	<mark>0.85</mark>	<mark>2.82</mark>
Brazil	0.96	0.02	0.16	0.39	1.24	2.76
Mexico	0.93	0.01	0.10	0.49	1.22	2.74
Finland	0.77	0.10	0.42	0.43	0.98	2.68
India	0.97	0.03	0.24	0.37	1.06	2.67
Hong Kong	0.96	0.04	0.29	0.39	0.98	2.66
Singapore	0.92	0.04	0.32	0.44	0.89	2.60
Chile	0.94	0.01	0.04	0.43	1.18	2.60
Malaysia	0.92	0.04	0.08	0.40	1.13	2.56
<mark>Beijina</mark>	<mark>0.96</mark>	<u> </u>	0.36	<mark>0.39</mark>	<u> </u>	2.56
<u>Shenzhen</u>	<mark>0.85</mark>	<u>0.05</u>	0.39	<u>0.33</u>	<mark>0.9</mark>	<u>2.52</u>
Argentina	0.91	0.04	0.03	0.39	1.14	2.51
Thailand	0.82	0.01	0.03	0.47	1.11	2.44
Russsia	0.89	0.04	0.10	0.42	0.93	2.39


NIS around the world: Average using the 2011~`15 values

Clustering the NIS around the world

Cluster	① 1-HHI	② Localization	③ Diversification	④ Knowledge combination	5 Relative Cycle Time	NIS5 =①+②+③+④+⑤
Developed NIS: 4 EU C's	0.983	0.103	0.719	0.429	1.127	3.36
Catching-up NIS (Asian tigers)	0.930	0.077	0.527	0.365	0.879	2.78
Middle-income NIS (Brazil, Argentina, Chile, Mexico, Thailand, Malaysia)	0.91	0.02	0.07	0.43	1.17	2.60
Shenzhen	<mark>0.85</mark>	<mark>0.05</mark>	<mark>0.39</mark>	<mark>0.33</mark>	<mark>0.9</mark>	<mark>2.52</mark>
Silicon Valley	0.99	0.69	0.63	0.51	0.87	3.69
Israel	0.99	0.07	0.43	0.50	1.04	3.03

- In developed NIS and Silicon Valley, most indices are highest.
- In catching-up NIS, localization and diversification high; but in short cycle time.
- In MIC NIS; very low localization & diversification but in long cycles

The 3 NIS compared (using normalized values): catch-up NIS = detour for the Dev'd (mature) NIS

Dynamic Change of the NIS over time: why the detour makes sense; emergence of the Catching-up NIS:

Cluster Analysis (JH Lee 2018)

Period	G1	G	i2 iCs)	G3	G4 (EU4)	G5 (Catch-up)	G6	G7
1988-1991	Argentina Malaysia	Brazil Chìna Denmark Finland Hong Kong	India Mexico Norway Singapore South Korea Taiwan	Chile Thailand	France Germany Italy, UK Sweden	-	Japan	US
1996-1999	Argentina	Brazil Chìna Denmark Finland Hong Kong India	Malaysia Mexico Norway Singapore Thailand	Chile	France Germany Italy, UK Sweden	South Korea Taiwan	Japan	US
2004-2007	-	Argentina Brazil Chile China Denmark Hong Kong	India Malaysia Mexico Norway Singapore Thailand	-	France Germany Italy, UK Sweden	Finland South Korea Taiwan	Japan	US
2008-2011	-	Argentina Brazil Chile Denmark Hong Kong India	Malaysia Mexico Norway Singapore Thailand	-	France Germany Italy, UK Sweden	China Finland South Korea Taiwan	Japan	US

NIS vs. Complexity to economic growth, '99-15 (JH Lee 2018)

Dependent: 4 year average of annual	(1)	(2))	(3)		(4)	
growth of GDP per capita	b	t	b	t	b	t	b	t
Log of initial GDP per capita	-0.091***	-7.50	-0.083***	-6.66	-0.088***	-7.36	-0.069***	-6.58
Growth rate of population	-1.26	-1.53	-1.31	-1.61	-1.28	-1.57	-1.24	-1.26
Fixed capital investment per GDP	0.39***	4.52	0.40***	4.64	0.40***	4.72	0.35***	3.53
Enrollment :secondary education	0.011	0.90	0.013	1.04	0.0060	0.50	-0.0053	-0.46
NIS3 (diver+origi+cycle)	0.095***	3.35						
NIS4 (local+decent+origi+cycle)			0.062**	2.05				
NIS5					0.066***	2.73		
ECI (econ. Complexity)							0.019**	2.67
Constant	0.74***	7.43	0.64***	5.75	0.68***	7.45	0.62***	6.35
adj. R-sq	0.36		0.34		0.36		0.31	
Ν	171		171		171		159	

Both NIS & Complexity significant to Economic growth

Dependent: 4 year average of annual g	(1) 83	3~15	(2) 83	3~99	(3) 99~15	
rowth of GDP per capita	b	t	b	t	b	t
Log of initial GDP per capita	-0.056***	-8.29	-0.11***	-4.56	-0.083***	-6.77
Growth rate of population	-0.93**	-2.52	-0.71	-0.67	-1.12	-1.3
Fixed capital investment per GDP	0.25***	5.67	0.36***	4.08	0.36***	4.11
Enrollment: secondary education	0.0098	0.81	0.072***	3.76	0.002	0.17
NIS4	0.053***	4.24	0.058***	3.68	0.057**	2.2
ECI	0.013**	2.55	0.0035	0.2	0.016**	2.38
Constant	0.39***	7.86	0.78***	4.01	0.63***	6.97
adj. R-sq	0.28		0.36		0.35	
Observations	294		135		159	
Groups	40		38		40	
Hausmann	49.02***		33.28***		35.99***	

✤ NIS5 = Localization + decentralization + Originality + Diversification + Relative cycle time

Concluding Remarks/ Implications

- NIS/RIS can be measured by patent data: 5 Variables:
 - -- Knowledge combination and diversification Vars (highest in Germany)
 - = readiness for the 4th Industrial Revolution
- Higher NIS index -> higher economic growth cf) complexity;
 -- but upgrading of NIS is not linear but involves detours

- Could identify different NIS groups by clustering analysis and a dynamic changes in the patterns of NIS:
- -- from the MIC NIS to mature/developed NIS via Catching up NIS
 (eg e. Asia in short cycle technologies) → detour strategy (Lee 2019 book)
- importance of detour (from short to long cycle tech) for effective catch-up
- Similar variables can be measured for NIS, RIS, CIS

Thank you!

Visit (www.keunlee.com)

for many PPT and Papers

References

- Keun Lee and Jongho Lee, "The National Innovation System (NIS) and Readiness for the 4th Industrial Revolution: South Korea compared with European Four Countries," a chapter in a forthcoming book. Patrizio Bianchi, Clemente Ruiz Duran, and Sandrine Labory, eds. GLOBALISATION, HUMAN CAPITAL, REGIONAL GROWTH AND THE 4TH INDUSTRIAL REVOLUTION, 2018, E. Elgar.
- Lee, Keun, 2013, Schumpeterian Analysis of Economic Catch-up: Knowledge, Path-creation and middle income trap, Cambridge Univ. Press
- Keun Lee, Buru Im, and Junhee Han, "The National Innovation System (NIS) for the Catch-up and Post-Catchup Stages in South Korea." in Choi, J. et al, Eds. The Korean Government and Public Policy in Development Nexus, 2017, Springers
- Lee, Keun, The Art of Economic Catch-up: barriers, detours and leapfrogging in innovation systems, Cambridge Univ Press, March 2019