Do patents mitigate financing constraints?

Felix Bracht IPSDM - Alicante, October 23, 2018

Center for R&D Monitoring (ECOOM) at KU Leuven *felix.bracht@kuleuven.be*

- Most studies provide evidence that innovative firms are financially constrained (Harhoff 2000, Brown et al. 2012, Cincera et al. 2016)
- Studies on the mitigation of financing constraints are focusing on the institutional framework and the relationship between firm and investor (Beck et al. 2007, Shane & Cable 2002)

Many innovative firms have patents that might mitigate financing constraints

- Patents serve as quality signal to external resource provider (Long 2002)
- Firms' patenting activity reduces the reliance on internal liquidity for financing R&D (Hottenrott et al. 2016)

H1: Past patenting activity has a positive effect on firms' investment rate.

Patents as Loan Collateral

 <u>New:</u> Patents serve as a source of finance by offering them for loan collateral

H2: Patent pledging activity increases firms' investment rate.

 Lenders do not just rely on observable information they also gain a protection

> H3: Pledged patents have a stronger impact on firms' investment rate than their patent activity.

- Detailed financial historic data of all Swedish firms between 1998-2015 from the Swedish Company and Registration Office (Serrano Panel Data)
- Bibliographic data for all patents applied by Swedish firms from PATSTAT
- All pledged patents in Sweden during 1980-2015 and data on change of ownership from PRV

<u>Restriction</u>: Small, R&D-active, Swedish firms

Pledged Swedish Patents

Figure 1: Yearly number of patent pledges

Figure 3: Frequency of patent pledges per firm

Figure 4: Pledged patent portfolio size

Patent Pledging Swedish Firms

Figure 5: Yearly number of patent pledging firms

Figure 6: CDF of firms age

Figure 7: CDF of firms size

Figure 8: High-tech industry classification

- Literature: Cash-flow sensitivity on future investments in a dynamic investment model known as FHP model (Fazzari et al. 1988, Chirinko 1993)
 - Cash-flow is also a predictor for future profitability (Kaplan & Zingales 1997, Farre-Mensa & Ljungqvist 2016)
 - Weak instruments prevent the consistent estimation of a dynamic model (Arellano & Bover 1995, Blundell & Bond 1998)
- Our Model: Diff-in-diff estimation in a fixed effects model with additional controls for time-variant firm characteristics

Empirical Model

$$\begin{split} \frac{l_{i,t}}{K_{i,t-1}} &= \beta_1 \ln(\textit{patstock})_{i,t-1} + \beta_2 \textit{pledge}_{i,t} + \beta_3 \textit{pre_pledge}(t-1)_{i,t} \\ &+ \beta_4 \textit{pre_pledge}(t-2)_{i,t} + \beta_5 \textit{post_pledge}(t+1)_{i,t} + \beta_6 \textit{post_pledge}(t+1+n)_{i,t} \\ &+ \gamma_1 \left(\frac{WCAP}{K}\right)_{i,t-1} + \gamma_2 \textit{sales_growth}_{i,t} + \gamma_3 \left(\frac{D}{K}\right)_{i,t-1} + \gamma_4 \ln(\textit{assets})_{i,t-1} \\ &+ \gamma_5 \textit{group}_{i,t} + d_t + \alpha_i + v_{i,t} \end{split}$$

• $\frac{1}{K}$: Capital expenditure to tangible fixed assets

•
$$patstock_{i,t} = (1 - \delta)patstock_{i,t-1} + patapp_{i,t}$$
 with $\delta = 15\%$

- pledge_{i,t}: Dummy if firm has pledged a patent in t
- ▶ pre_pledge(t − 1)_{i,t}: Dummy one year before firm has pledged a patent
- post_pledge(t + 1)_{i,t}: Dummy one year after firm has pledged a patent

	Full sample: N=115,888				Firms pledged patents: N=1,153			
	Mean	S.D.	min	max	Mean	S.D.	min	max
I/K	0.757	0.938	0.000	4.554	0.883	1.004	0.000	4.535
Pledged Patents	0.009	0.222	0.000	21.000	0.879	2.046	0.000	21.000
Patentstock	0.258	1.386	0.000	96.270	2.071	3.635	0.000	31.346
WCAP/K	8.446	10.137	0.030	46.172	8.033	10.492	0.031	46.172
Sales Growth	0.133	0.286	-0.334	1.133	0.180	0.318	-0.332	1.118
D/K	1.664	2.784	0.000	14.329	2.150	3.112	0.000	14.250
Total Assets	19.745	291.726	0.000	34109.808	24.668	80.126	0.040	1401.000
Age	13.083	12.647	0	135	12.902	12.899	0	77
Group	0.433	0.495	0	1	0.508	0.500	0	1

Total assets in 1000 SEK (SEK/EUR ≈ 0.1)

- Cleaned for irrelevant sectors, M&A's, bankruptcies, outliers.
- Panel contains 14,068 firms observed between 1998-2012.
- 2,425 firms have a positive patent stock. 138 firms have pledged patents.

Main Results

$I_{i,t}/K_{i,t-1}$	Pledge	dummy	Pledg	estock	Pledgecitestock	
$ln(patentstock)_{i,t-1}$	0.075*	(0.045)	0.076*	(0.045)		
$ln(patentcitestock)_{i,t-1}$					0.051*	(0.030)
pledge _{i,t}	0.38**	(0.18)				
$ln(pledgestock)_{i,t}$			0.24**	(0.12)		
$ln(pledgecitestock)_{i,t}$					0.11*	(0.060)
$pre_pledge(t-1)$	0.20	(0.21)	0.15	(0.21)	0.13	(0.21)
$pre_pledge(t-2)$	0.25	(0.16)	0.21	(0.16)	0.19	(0.16)
$post_pledge(t+1)$	0.10	(0.14)	0.048	(0.12)	0.037	(0.12)
$post_pledge(t + 1 + n)$	0.30	(0.23)	0.25	(0.23)	0.24	(0.23)
Financial controls	Yes		Yes		Yes	
Year Dummies	Yes		Yes		Yes	
Observations	52430		52430		52430	

Robust standard errors in parentheses

All regressions have a constant

***, **, and * stand for significance at the 1%, 5%, and 10% levels.

Difference in the coefficients of pledgestock and patentstock is insignificant.

Results are robust for a restricted sample of firms that applied for patents.

Conclusion and Limitations

- Economically and statistically significant effect of patent pledging on investments for small and innovative firms (H2)
- Weak evidence for prior findings on the signalling value of patents (H1)
- No evidence for differences in patenting vs. pledging activity on firms' investments (H3)
- Limitations
 - Financial variables are likely to be jointly determined with firms' investment rate (simultaneity)

Discussion

Restricted Sample

Restrict sample for firms with a positive patent stock

$I_{i,t}/K_{i,t-1}$	Pledgedummy			
$ln(patentstock)_{i,t-1}$	0.061	(0.044)		
pledge _{i,t}	0.35**	(0.18)		
$pre_pledge(t-1)$	0.17	(0.21)		
$pre_pledge(t-2)$	0.23	(0.16)		
$\textit{post_pledge}(t+1)$	0.070	(0.14)		
$post_pledge(t + 1 + n)$	0.24	(0.24)		
Financial controls	Yes			
Year Dummies	Yes			
Observations	8237			

Robust standard errors in parentheses

All regressions have a constant

***, **, and * stand for significance at the 1%, 5%, and 10% levels

References i

- Arellano, M. & Bover, O. (1995), 'Another look at the instrumental variable estimation of error-components models', *Journal of econometrics* 68(1), 29–51.
- Beck, T. et al. (2007), Financing constraints of smes in developing countries: Evidence, determinants and solutions, *in* 'KDI 36th Anniversary International Conference', pp. 26–27.
- Blundell, R. & Bond, S. (1998), 'Initial conditions and moment restrictions in dynamic panel data models', *Journal of econometrics* 87(1), 115–143.
- Brown, J. R., Martinsson, G. & Petersen, B. C. (2012), 'Do financing constraints matter for r&d?', *European Economic Review* 56(8), 1512–1529.
- Chirinko, R. S. (1993), 'Business Fixed Investment Spending Modeling Strategies, Empirical Results, and Policy Implications', *Journal of Economic Literature* **31**(4), 1875–1911.

References ii

- Cincera, M., Ravet, J. & Veugelers, R. (2016), 'The sensitivity of r&d investments to cash flows: comparing young and old eu and us leading innovators', *Economics of Innovation and New Technology* 25(3), 304–320.
- Farre-Mensa, J. & Ljungqvist, A. (2016), 'Do measures of financial constraints measure financial constraints?', *The Review of Financial Studies* 29(2), 271–308.
- Fazzari, S. M., Hubbard, R. G., Petersen, B. C., Blinder, A. S. & Poterba, J. M. (1988), 'Financing constraints and corporate investment', *Brookings papers on economic activity* **1988**(1), 141–206.
- Harhoff, D. (2000), Are there financing constraints for r&d and investment in german manufacturing firms?, *in* 'The economics and econometrics of innovation', Springer, pp. 399–434.
- Hottenrott, H., Hall, B. H. & Czarnitzki, D. (2016), 'Patents as quality signals? the implications for financing constraints on r&d', *Economics of Innovation and New Technology* **25**(3), 197–217.

References iii

- Kaplan, S. N. & Zingales, L. (1997), 'Do investment-cash flow sensitivities provide useful measures of financing constraints?', *The quarterly journal of economics* 112(1), 169–215.
- Long, C. (2002), 'Patent signals', *The University of Chicago Law Review* pp. 625–679.
- Shane, S. & Cable, D. (2002), 'Network ties, reputation, and the financing of new ventures', *Management science* 48(3), 364–381.