

ENV/CHEM/NANO(2019)20

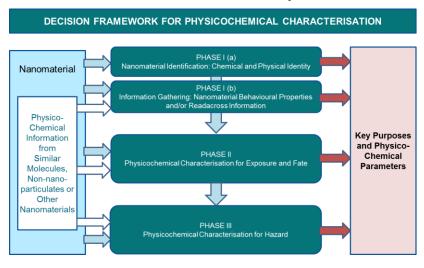
Unclassified	English - Or. English
	30 March 2020
ENVIRONMENT DIRECTORATE CHEMICALS COMMITTEE	
CHEMICALS COMMITTEE	
Working Party on Manufactured Nanomaterials	
Physical- chemical Decision Framework Worksheets	
Annex to document ENV/JM/MONO(2019)12	
This is an accompanying document to the PHYSICAL-CHEMICAL DECIS	SION FRAMEWORK TO
INFORM DECISIONS FOR RISK ASSESSMENT OF MANUFACTURE	
Series on the Safety of Manufactured Nanomaterials No. 90 [ENV/JM/MO	NO(2019)12].
Contact Mar Gonzalez: mar.gonzalez@oecd.org	
JT03460202	
0.100.100.202	

Annex 1: Worksheets to facilitate the information gathering for the Physico-Chemical Decision Framework to Inform Decisions for Risk Assessment

This series of Worksheets is a companion document to the *Physico-Chemical Decision Framework to Inform Decisions for Risk Assessment*. ¹ It is intended to help guide users during the substance identification and information gathering steps of the Decision Framework by providing an outline of relevant parameters for data collection and population.

The framework underlines the importance of integrating specific information needs (i.e. purposes) with physico-chemical properties measurements. As a whole, the framework is intended to clarify requirements and reduce uncertainty in the applicability of testing and measurements for resolving knowledge gaps. Apart from a fundamental base-set of physico-chemical parameters believed to be generally important, the framework does not impose a finite set of parameters and testing regiments. It is intentionally focused on the process of identifying and acquiring the most relevant physico-chemical parameters (and analysis considerations) for resolving perceived data gaps. Recognising the increasing complexity of emerging nanomaterials the use of grouping and read-across approaches are integrated in the process to ensure that the physico-chemical parameters identified remain both current and fit-for-purpose noting continuing advances in knowledge.

The Decision Framework consists of three primary evaluation phases identifying specific purposes and key physico-chemical parameters/endpoints for each purpose (Figure 1):


Phase I (a) Nanomaterial Identification (Worksheet 1a-c)

Phase I (b) Nanomaterial Information Gathering (Worksheets 2a-c, 3, 4, 5a-b, 6)

Phase II Human and Environmental Exposure and Fate Assessment (Worksheets 7.1a-c 7.2a-c)

Phase III Human and Environmental Hazard Assessment (Worksheets 8a-c and 9)

Figure 1: Overview of the Decision Framework for Physico-chemical Characterisation

¹ Series on the Safety of Manufactured Nanomaterials, No. 90. Physical-Chemical Decision Framework to Inform Decisions for Risk Assessment of Manufactured Nanomaterials. ENV/JM/MONO(2019)12

PHYSICAL- CHEMICAL DECISION FRAMEWORK WORKSHEETS

1. WORKSHEET 1a – General description of the material

In addition to ISO nomenclature standards (e.g., ISO/TS 80004-1:2015 (1) for core terms and ISO/TR 14786:2014 (2) for nomenclature considerations), Version 2.0 of the Uniform Description System for Materials on the Nanoscale (UDS) (3) could be considered in the context of these Worksheets. The UDS was developed in 2016, specific to nanomaterials, by the Committee on Data of the International Council for Science CODATA-VAMAS Working Group (WG) on Nanomaterials. This latest version contains 19 tables of detailed descriptors and their definitions that are directly applicable for reporting nanomaterials research results, identifying nanomaterials in regulations and standards, developing formats for nanoinformatics resources, specifying nanomaterials in commercial transactions, and other uses.

2. WORKSHEET 1b – Particle Chemical Identification

(Chemi	ICAL IDENTIT cal composition, TITUENT SUBS	molecular struc	cture informatio			rticle, and impurities) CONSTITUENT S' inferred):	FRUCTURE IDENT	ITY (measured or
Mass %	IUPAC name	Other names	Molecular structure/ formula	CAS name	CAS number	Location (Surface, subsurface, layer #, throughout, unknown)	Distribution (contiguous layer, discontinuous layer, random distribution, unknown, dispersant layer)	Determination method (synthesis procedure, EM & composition analysis)

Add additional rows as needed.

CHEM	CHEMICAL COMPOSITION AND MOLECULAR STRUCTURE OF NON-PARTICULATE CONSTITUENTS (e.g. dispersants)						
Mass %	IUPAC name	Other names	Molecular structure/ formula	CAS name	CAS number	Purpose (e.g. dispersant, biocide)	

Add additional rows as needed.

^{*} Attach details on measurements as available, including detailed description of sample preparation and methodology required (include rationale for selection of methods).

3. WORKSHEET 1c -Particle Physical Identity

Attach lower resolution micrograph
(lower resolution field of particles)
Particle size distribution
(best practical dispersion, cumulative passing; % <100 nm by number; % <100 nm by weight)

^{*} Attach details on measurements as available, including detailed description of sample preparation and methodology required (include rationale for selection of methods).

Relevant particle system forms	
Exists as a dry powder system?	Yes/No
Exists as particles in liquid?	Yes/No
Intended for aerosolisation?	Yes/No

4. WORKSHEET 2a – Baseline Component Physico-Chemical Properties (Where available)

PARTICLE IDENTITY*:				
For each component substance, as relevant:				
Physical state of the substance at 20 °C and 101.3 kPa:				
Melting/freezing point (major components and components with specific hazards):				
Boiling point (major components and components with specific hazards):				
Substance Density (particle component and liquid if relevant):				
Vapour Pressure (major components and components with specific hazards):				
Water solubility (particle component, as manufactured):				

^{*} Detailed description of sample preparation and methodology required (include rationale for selection of methods)

5. WORKSHEET 2b – Baseline Particle Physico-Chemical Properties (Where available)

PARTICLE IDENTITY*:		
For the solid particle systems (at 20 °C and 101.3 kPa):		
Peclet number (as manufactured):		
Photocatalytic activity (as manufactured):		
Surface reactivity (as manufactured):		
Other unique/enhanced properties (as manufactured):		
Isoelectric point (as manufactured):		
pH of 1% suspension in deionised water (as manufactured):		
Dispersion stability at 1% in deionised water (as manufactured):		
Agglomeration/aggregation state (as manufactured):		

^{*} Detailed description of sample preparation and methodology required (include rationale for selection of methods)

6. WORKSHEET 2c – Potential Issues Of The Solid Particle System

POTENTIAL ISSUES OF THE SOLID PARTICLE SYSTEM (Key to link to framework – Complete as possible)							
Shape	Is the substance or a component of the substance a WHO fibre?	the substance or a component of the substance a WHO fibre? Yes/No If Yes, flag inhalation hazard					
Reactivity	Is the substance engineered to promote reactivity?	Yes/No	If Yes, flag reactivity evaluation				
Dispersal	Is the substance engineered to prevent agglomeration?	Yes/No	If Yes, flag migration evaluation				
Known unique properties	Does the substance have known unique properties?	Yes/No	If Yes, flag unique properties				
Known enhanced	Does the substance have known nano-enhanced properties?	Yes/No	Take note of enhanced properties				
properties							

7. WORKSHEET 3 – Considerations Due To Intended Use

INTENTIONAL (UNIQUE) PROPERT	IES ASSESSMENT (key- include where known)		
	Property	Potential to modify exposure (human/environment)?	Potential to modify hazard (human/environment)?
What is the novel size dependent property?			
How does this property differentiate the materials from larger sized substances or alternative nanomaterials?			
Do other known nanoscale substances exhibit this property? If so, are identified implications known and related to physico-chemical parameters?			
What are the potential implications of this property in terms of human health?			
What are the potential implications of this property in terms of ecotoxicity?			
What are the potential implications of this property in terms of exposure (human/environment)?			

10 | ENV/CHEM/NANO(2019)20

INTENDED USE	S AND REASONAL	BLY ASCERTAIN	ABLE USE INFOR	MATION			
USE (including	Environmental	Approximate	Physical state	Potential human	Potential	Particle	Relevant
amount, e.g. tonnes per year)	conditions during use (e.g. pH, temperature)	percent mass content in end use	(solid matrix, powder, dispersion, paste, aerosol)	exposure route(s)	environment exposure route(s) (including waste stage)	transformation likely? If yes, fill Worksheets 5A & 5B	notes/concerns
					stage)	(transformation)	

8. WORKSHEET 4 – Known Behaviour Identification Screening

Hazard	DENTIFIED FROM COMPONENT CHEMICAL SUBSTANCES Physical hazard related information					
	Substance(s)	Transformation anticipated?*				
Explosive properties						
Flammability						
Autoignition temperature						
Self-reactivity						
Pyrophoricity						
Water reactivity						

HEALTH HAZARDS IDENTIFIED FROM COMPONENT CHEMICAL SUBSTANCES				
Substance	ubstance Available hazard related information			
	GHS hazard Physical state of substance Exposure route Potency information			
		(ion, particle, etc.)	(as applicable)	

ENVIRONMENTAL IMPLICATIONS IDENTIFIED FROM COMPONENT CHEMICAL SUBSTANCES				
Substance	Available hazard related information			
	GHS hazard Physical state of substance Exposure route Potency information			
	(ion, particle, etc.) (as applicable)			

POTENTIAL PARTICLE BEHAVIOUR FORECAST ASSESSMENT* (Key to link to framework – Complete as possible)				
/To estimate environmental compartment	distribution			
Solubility in water	Solubility less than 100 mg/L?**	Yes/No	If No, continue with std chemical substance evaluation	
Dispersibility in water		Yes/No		
Solubility in other relevant media		Yes/No		
Dispersibility in other relevant media		Yes/No		
Dissolution rate in water		Yes/No		
Dissolution rate in other relevant media		Yes/No		
Dustiness		Yes/No		
Density				
Soil deposition potential				
Comments:				

^{*} Consider time scales for these processes where relevant.

^{**} This is an arbitrary value that is not fixed yet. Also for the other parameters criteria need to be set to indicate what next steps may be.

9. WORKSHEET 5a – Initial Chemical Transformation Assessment

Chemical transformations (consider a	Chemical transformations (consider all component substances and especially those that comprise the surface)				
Reaction with water?	Reaction:	Reaction half-life?	Form of products	Time period after which 80% of the material is no longer nanoscale?	
Reaction with air?	Reaction:	Reaction half-life?	Form of products	Time period after which 80% of the material is no longer nanoscale?	
Other relevant reactions within use matrix?	Reaction:	Reaction half-life?	Form of products	Time period after which 80% of the material is no longer nanoscale?	
Relevant Photochemistry or Sensitive thermal reactions (e.g., free radical generation, decomposition)	Reaction:	Reaction half-life?	Form of Products	Time period after which 80% of the material is no longer nanoscale?	
Other relevant reactions with environmental media?	Reaction:	Reaction half-life?	Form of products	Time period after which 80% of the material is no longer nanoscale?	

10. WORKSHEET 5b – Initial Physical Transformation Assessment

Physical transformations	Physical transformations			
Appreciable dissolution rate in water?	Equilibrium solubility	Dissolution half- life? (open system)	Impact of pH	Time period after which 80% of the material is no longer nanoscale?
Formation of irreversible aggregates (e.g. coalescence, mechanofusion)?	Mechanism of fusion	Conditions promoting fusion and timescale?	Is fusion intentional in application/use?	Time period after which 80% of the material is no longer nanoscale?
Other physical transformations	Mechanism	Timescale	Modifying factors	Time period after which 80% of the material is no longer nanoscale?

11. WORKSHEET 6 - Related Materials Screening - To identify relevant analogue particulate materials

Similar Composition (e.g. similar composition but different structure; similar composition but with or without certain chemical substances, surfaces, etc.) Key physico-chemical **Notes: similarity/differences** Relevant hazards Related exposure Substance considerations (including parameters identified for potential for corisk characterization exposures) Similar structural forms (e.g. similar structure different composition, similar coating layer different core-composition, physical, particle shape, etc.) Related exposure **Key physico-chemical Notes: similarity/differences Substance** Relevant hazards considerations (including parameters identified for potential for corisk characterization exposures) Related substances of similar use Related exposure **Key physico-chemical Substance** Relevant hazards Notes: similarity/differences considerations (including parameters identified for potential for corisk characterization exposures)

12. WORKSHEET 7.1a – Exposure And Fate Assessment – Air

Considerations on Potential Exposure Routes

DRY PARTICLE SYSTEMS		
Key purposes:	Specific purposes:	Physico-chemical parameters and method considerations
	Specific purposes: Determine if exposure to human lungs and olifactory is significant: - Estimate concentration in air - Estimate inhalation exposure - Estimate transport through the lungs - Estimate accumulation site or clearance Determine if oral exposure to human gastrointestinal tract is significant - Estimate transport through the Intestinal tract - Affinity to Intestinal Mucosal layer - Properties influencing transcytosis (gap) Determine (roughly) potential dispersal to terrestrial ecosystem >> see Worksheet 7.1 B	Physico-chemical parameters and method considerations Relevance of surrogate aerosolising method to real world exposure scenarios Relative impact of environmental conditions (e.g. humidity, electrostatics) Propensity to agglomerate with aerosol concentration • Aerodynamic size distribution • Dustiness • Mass fraction inhalable • Mass fraction respirable • Shape and composition of respirable fraction • Shape and composition of inhalable fraction • Flexural rigidity of respirable and inhalable fraction • Surface properties to evaluate Clearance rate (e.g., phagocytosis, endocytosis) • Charge • Hydrophobicity
		 Surface properties To be assigned: Static charge potential Critical aerosol agglomeration concentration

13. WORKSHEET 7.1b – Exposure And Fate Assessment – Terrestrial Environment

Considerations on Potential Transformations in Terrestrial Environment

DRY PARTICLE SYSTEMS		
Key purposes:	Specific purposes:	Physico-chemical parameters and method considerations
Determine potential transformations that may occur in the terrestrial environment	Determine if chemical transformations are likely in a terrestrial environment	Relevant and characteristic chemical transformations along with relevant properties such as: • Water reactivity • Surface Passivation • Photo-transformations/degradation • Redox Reactions
	Determine if physical transformations are likely in a terrestrial environment	Relevant and characteristic physical transformation and relevant properties such as: • "irreversible" adhesion to other surfaces • Surface dissolution and reprecipitation (e.g. caking) • Solubility of reaction products above etc. • Physical passivation of surfaces through adsorption • Changes in water dispersibility • Crystallinity
Estimate timescales and extent of transformations	Evaluate timescales and relevance of transformations Evaluate percent mass impacted and relevance for subsequent evaluation Identify relevant nanomaterial forms for consideration for hazard evaluations	Reaction kinetics measurements Dissolution kinetics Accelerated weathering kinetics Particle size analysis of transformed substance

18 | ENV/CHEM/NANO(2019)20

DRY PARTICLE SYSTEMS		
Key purposes:	Specific purposes:	Physico-chemical parameters and method considerations
Identify disposition and concern level in	Compare / contrast with natural nanomaterials in	Contrast with natural nanomaterials
terrestrial environment	environment	Composition
		Crystallinity
		Structure (surface/bulk)
		• Shape
		Aggregation/agglomeration behaviour
		Propensity to deposit on other surfaces (surface affinity)
		Known unique properties
		Known enhanced properties
	Identify potential for migration through soil (typically low)	Soil deposition potential / heterocoagulation / filtration
		Known unique properties
		Known enhanced properties
		To be assigned:
		Soil sorption coefficient of dissolved components

14. WORKSHEET 7.1c – Exposure And Fate Assessment – Aquatic Systems

Considerations on Potential Distribution to Aquatic Systems

DRY PARTICLE SYSTEMS		
Key purposes:	Specific purposes:	Physico-chemical parameters and method considerations
Determine potential exposure to an relevant form and compartmentalisation for aquatic environments:	Identify if the substance as a whole or in part is likely to dissolve? Identify if the substance is likely to agglomerate or heterocoagulate in aquatic media Determine likely compartment.	Representative aquatic media Dissolution rate / Half-life Equilibrium solubility Interactions with naturally occurring ions and organic molecules
	Also consider: - Migration through soil into groundwater - Precipitation of dissolved components in water	Dispersibility in aquatic media Designed dispersion mechanism (e.g. steric surface treatment) Iso-electric point (IEP) of nanomaterial versus pH of aquatic media Salinity of aquatic media (salting in / salting out) Surface affinity / heterocoagulation Hydrophobicity / hydrophilicity Degradation rate Effective particle Péclet number Sedimentation kinetics Surface affinity / heterocoagulation

20 | ENV/CHEM/NANO(2019)20

Key purposes:	Specific purposes:	Physico-chemical parameters and method considerations
Evaluate concerns related to end-of-life disposition	For wastewater treatment: Determine partitioning to sludge Determine dissolution / degradation Determine susceptibility to flocculation	 Sediment/soil disposition potential Dissolution rate under relevant waste water treatment conditions Degradation rate / chemical transformation rate under relevant waste water treatment conditions Susceptibility to relevant flocculants Dispersibility in wastewater Surface affinity to activated sludge
		Known enhanced properties Known unique properties

15. WORKSHEET 7.2a – Further Exposure And Fate Assessment Considerations

Considerations on Poorly Soluble or Immiscible Continuous Phase

WET PARTICLE SYSTEMS	WET PARTICLE SYSTEMS				
Key purposes	Specific purposes	Physico-chemical parameters and method considerations			
Identify key issues transport and exposure	Determine environmental transport of liquid	Solubility of liquid matrix			
issues for particles in wet systems where the	matrix	Octanol-water partitioning coefficient (liquid)			
liquid is not miscible or partly soluble with		Effective liquid + particle system density			
water		Surface tension of liquid			
		Viscosity of liquid / liquid + particle system			
		Vapour pressure			
	Determine if particle likely to separate from	Spreading rate at aqueous interfaces / surface pressure kinetics			
	liquid phase	Particle size distribution			
		Dispersion stability			
		Péclet number			
Determine compartmentalisation in	Determine relevant timescale in water column	Representative aquatic media			
representative aquatic environments		Dispersibility in aquatic media			
		Sedimentation rate in aquatic media			
		Particle Péclet number			
	Determine relevant timescale in sediment	Representative sediment			
	Determine migration potential in sediment	Sediment deposition potential (filtration/ surface affinity)			

16. WORKSHEET 7.2b – Further Exposure And Fate Assessment Considerations

Considerations on Potential Transformations in Aquatic Environment

WET PARTICLE SYSTEMS		
Key purposes	Specific purposes	Physico-chemical parameters and method considerations
Determine potential transformations that may occur in the aquatic environment	Determine if chemical transformations are likely in the representative aquatic environment (based on source material where applicable)	Relevant and characteristic chemical transformations and relevant properties such as: • Water reactivity • Surface passivation • Degradation • Redox reactions • Fouling / corrosion (e.g. sulphidisation)
	Determine if physical transformations are likely in the representative aquatic environment (based on source material where applicable)	Relevant and characteristic physical transformation and relevant properties such as: "irreversible" adhesion to other surfaces Dissolution rate in relevant media Surface dissolution and reprecipitation (e.g. caking) Solubility of reaction products above, etc. Physical passivation of surfaces through adsorption Changes in water dispersibility
Estimate timescales and extent of transformations in representative aquatic environment	Evaluate timescales and relevance of transformations (based on source material where applicable) Evaluate percent mass impacted and relevance for subsequent evaluation (based on source material where applicable) Identify relevant nanomaterial forms for consideration for subsequent evaluations (based on source material where applicable)	Reaction kinetics measurements Dissolution kinetics Accelerated weathering kinetics Particle size analysis of transformed substance

17. WORKSHEET 7.2c – Further Exposure And Fate Assessment Considerations

Considerations on End-Of-Life Disposition

WET PARTICLE SYSTEMS		
Key purposes	Specific purposes	Physico-chemical parameters and method considerations
Evaluate concerns related to end-of-life	For wastewater treatment:	Sediment/soil disposition potential
disposition	Determine partitioning to sludge	Dissolution rate under relevant waste water treatment
	Determine dissolution / degradation	conditions
	Determine susceptibility to flocculation	Degradation rate / chemical transformation rate under relevant
		waste water treatment conditions
		Susceptibility to relevant flocculants

18. WORKSHEET 8a – Specific Hazard Considerations for Human Exposure - Dermal

Key purposes	Specific purposes	Physico-chemical parameters and method considerations
Identify parameters that may modify dermal contact hazards	Determine factors that may enhance interactions with viable tissue - Chemical composition and impurities - Specific surface area - Particle size distribution - Shape - Surface chemistry - Charge / zeta potential - Free radical generation capacity - Dissolution rate - Agglomeration / aggregation - Crystallinity	Relevant sweat or fluid media Biological pH range Particle size distribution Particle shape distribution Surface chemistry Crystallinity Dispersion and/or dissolution in sweat Surface affinity to epidermis / dermis Hydrophobicity Isoelectric point Surface reactivity Active agent release Chemical composition
	- Conduction band energy level - Corrosivity - Determine factors that may modify biological activity Determine factors that may modify kinetics / transport through the body, e.g.: - Dispersibility in plasma - Affinity to cell surfaces	Specific surface area Unique properties Degradation rate Octanol-water partitioning of media soluble compounds (e.g. dispersant) pKa of soluble compounds

19. WORKSHEET 8b – Specific Hazard Considerations for Human Exposure - Inhalation

Key purposes	Specific purposes	Physico-chemical parameters and method considerations
Identify parameter that may modify pulmonary exposure hazards	Determine relevance of factors that may modify phagocytic clearance Determine relevance of factors that may modify specific biological activity Estimate transport through the lungs Consider that response to initiating events from chemical (as opposed to simply particle) responses may result in changes in relevant fluid conditions and interactions	Relevant pulmonary fluid, interstitial fluid, lysosomal fluid, or intracellular fluid Affinity to cell surfaces Factors that impact adsorption and adsorbed conformation of biomolecules: / pulmonary exposure hazard: • Surface chemistry/defects • Surface energy • Crystallinity • Particle size • Particle shape • Isoelectric point • Stereochemical and coordination effects Surface reactivity Surface charge Conduction band energy Known unique properties Known enhanced properties Specific surface area Excluded Volume Free radical generation capacity Flexural rigidity Dispersibility in lung fluid & resulting Péclet number Surface affinity to lung tissue cells / surveillance cells Properties that modify phagocytosis clearance rate

20. WORKSHEET 8c – Specific Hazard Considerations for Human Exposure – ORAL

Key purposes	Specific purposes	Physico-chemical parameters and method considerations
Identify parameters that may modify oral exposure hazards	Determine potential transformations due to interactions with biological fluids	Relevant saliva, mucus, stomach, upper and lower intestinal fluids
	Determine potential transformations upon ingestion Estimate potential for transport into circulation See above	Relevant and characteristic chemical transformations and relevant properties such as: • Water reactivity • Surface passivation • Degradation • Redox reactions Relevant and characteristic physical transformation and relevant properties such as: • "irreversible" adhesion to other surfaces (e.g. fibre) • Surface dissolution and reprecipitation (e.g. caking) • Solubility of reaction products above etc. • Physical passivation of surfaces through adsorption Dispersibility in fluid Surface affinity to other surfaces
		Unique properties Impact of progressive changes in media on transformations and
		dispersion

21. WORKSHEET 9 – Specific Hazard Considerations for the Environment

Identify parameters that may modify aquatic and	Determine potential transformations due to interactions	Relevant and characteristic chemical transformations and relevant
sediment exposure hazards	with test media	properties such as:
1		Water reactivity
		Surface passivation
		Degradation
		Redox reactions
		Fouling /corrosion (e.g. sulphidisation)
		Towning (terresion (tig) swipmusuuten)
	Determine agglomeration and dissolution rates	Relevant and characteristic physical transformation and relevant
		properties such as:
		"Irreversible" adhesion to other surfaces
		Dissolution and reprecipitation
		Solubility of reaction products above, etc.
		Physical passivation of surfaces through adsorption (e.g.
		NOM adsorption)
	Determine surface affinity to test organism	Agglomeration rate
		Dissolution rate
		Surface chemistry
		Surface energy
		Isoelectric point / surface charge
		Surface area
		• Shape
		Péclet number
		- 1 color number
		Known unique properties
		Known enhanced properties

Note that the relevance of specific physico-chemical parameters for behaviour in complex systems can be largely impacted by shape as well as chemical composition of the material and its surface. Hence using source materials and grouping to aid in narrowing physico-chemical parameter relevance is necessary and should overtime lead to more explicit rules for categories based on physico-chemical parameters for certain sets of materials.

22. References

- (1) ISO (2015). ISO/TS 80004-1:2015 Nanotechnologies Vocabulary Part 1: Core terms. ISO report. International Organisation for Standardisation (ISO), Genève, Switserland.
- (2) ISO (2014). ISO/TR 14786:2014 Nanotechnologies -- Considerations for the development of chemical nomenclature for selected nano-objects. Technical Report. International Organization for Standardization (ISO). Available from: https://www.iso.org/standard/55039.html.
- (3) CODATA-VAMAS Working Group On the Description of Nanomaterials and Rumble J. (2016). Uniform Description System for Materials on the Nanoscale Version 2.0. Report 56720. International Council for Science: Committee on Data for Science and Technology (CODATA) and Versailles Project on Advanced Materials and Standards (VAMAS). Available from: https://zenodo.org/record/56720.