International Competition and Invention Quality: Evidence from Swiss Firms

Mark James Thompson

Chief Economist, Austrian Patent Office

IPSDM 2017

Outline

Introduction

Model

Data

Results

International Market Events and Patent Quality

Stylized finding from the literature

- 1. the first is that invention quality is a normal good and tends to be associated with more demand ("pull" theory);
- there is a general observation that internationally oriented firms tend to produce more patents;
- patents tend to be associated with firms with better sales performance;
- 4. competition fosters innovation.

Simple Model of Consumers

$$\begin{array}{ll} \underset{U}{\operatorname{argmax}} & U[\mathbf{x}_j] = x_{1j}^{\alpha_j} \cdot x_{2j}^{(1-\alpha_j)}, 0 \leq \alpha \leq 1 \\ \\ \operatorname{subject to} & \sum_{i=1}^{I=2} p_{ij} x_{ij} \leq m_j, \ j=1,\ldots,m \end{array}$$

Preferences as a function of R&D

Equation 2 is our putative firms innovation function for quality shifts that preference α :

$$\alpha_{1j}[r_{ijt}] = \frac{1}{1 + e^{-k_{\alpha} \sum_{t=0}^{T} r_{ijt}}}$$
 (1)

Sales as a function of R&D

$$\frac{\partial s_{ij}}{\partial r_{ijt}} = \frac{k e^{k_{\alpha} \sum_{t=0}^{T} r_{ijt}} m_j}{(1 + e^{k_{\alpha} \sum_{t=0}^{T} r_{ijt}})^2}$$
(2)

Hypotheses

- H1: If firms compete in larger markets, then they produce higher quality inventions.
- H2: If firms produce higher quality inventions for larger markets, then they generate more sales.

Hypothesized Causal Graph

KOF / CIS Innovation Survey

- 1. 1990-2013 every 2-3 years : 9 cross-sections
- 2. Bayesian imputation to handle selection effects
- 3. Patent data from PATSTAT

Measuring Invention Quality

Table: Factor Loadings of Quality Attributes

	PC1	PC2	PC3	PC4	PC5
In[FWCitations]	0.439	-0.485	0.097	-0.748	0.052
In[Generality]	0.397	-0.622	-0.315	0.597	0.025
In[FamilyCount]	0.511	0.424	0.017	0.079	0.743
In[NPLcount]	0.438	0.120	0.750	0.248	-0.413
In[NumClaims]	0.444	0.429	-0.573	-0.129	-0.523
λ	0.451	0.180	0.157	0.123	0.088

Measuring Competition

	Int. Oligopolistic	Int. Non-Price	Market 2	Market 3
priceCompetition	-0.47	0.45	-0.66	-0.37
nonPriceCompetion	0.18	0.73	0.56	-0.34
degreeCompetition	-0.66	0.25	0.27	0.65
exportShare	0.56	0.45	-0.41	0.57
$\lambda =$	1.10	1.07	0.93	0.88

Table: Principal Component Loadings of Market Attributes

Table: Competition and Innovation Output (FE)

	Patents _{i,t} (Ia)	InQuality _{i,t} (IIa)	Patents _{i,t} (Ib)	InQuality _{i,t} (IIb)	
	-0.055***	0.02	r atents _{i,t} (ib)	inquality _{1,t} (iib)	
$priceCompet_{t-1}$	-0.055				
$nonPriceCompet_{t-1}$	0.070***	0.05			
$degreeCompetition_{t-1}$	0.017***	0.02			
exportShare $_{t-1}$	0.301***	0.43***			
$intOligopolisticMarket_{t-1}$			0.059***	0.08**	
$intNonPriceMarket_{t-1}$			0.040***	0.11***	
$In[firmSize_{t-1}]$	0.170***	0.11***	0.226***	0.11***	
$ln[knowledgeStock_{t-1}]$	0.922***	0.26***	0.815***	0.26***	
$ln[knowledgeStock_{t-1}^2]$	-0.031***	-0.01	-0.02***	-0.01	
$shrEmplHiEduc_{t-1}$	-0.402***	0.61***	-0.408***	0.64***	
$pastDemand_{t-1}$	0.038***	0.07**	0.044***	0.07**	
$techPotential_{t-1}$	0.064***	0.07**	0.060***	0.08**	
wagePercentileWithinIndustry $_{t-1}$	-19.9	-1.90***	11.41	-1.87***	
wagePercentileWithinCH $_{t-1}$	0.476***	2.27***	0.646***	2.23***	
Firm fixed effects	yes	yes	yes	yes	
Time fixed effects	yes	yes	yes	yes	
R^2		0.14		0.14	
F		674***		38.3***	
Log-Likelihood	-6619	674***	-6613	38.3***	
N	1796	1796	1796	1796	
*** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. Patents equation modeled as Poisson count.					

Table: Innovation Sales Performance and Competition

		In[innoSales] _{i,t}	
	(V)	(VI)	(VII)
$InFirmSize_{t-1}$	0.06*	0.06*	0.06
$InPatentStock_{t-1}$	0.46***	0.45***	0.48***
wagePercentileWithinIndustry	2.83***	2.83***	2.86***
wagePercentileWithinCH	-3.09***	-3.09***	-3.14***
shrEmplHiEduc	2.32***	2.32***	2.41***
$pastDemand_{t-1}$	0.20***	0.20***	0.20***
techPotential _{t-1}	0.49***	0.49***	0.49***
inventionQuality $_{t-1}$	0.07**	0.01	0.07**
$priceCompet_{t-1}$	0.04	0.04	
nonPriceCompet $_{t-1}$	0.32***	0.32***	
$degreeCompetition_{t-1}$	-0.15***	-0.15***	
exportShare _{t-1}	2.35***	2.40***	
$In[inventionQuality_{t-1}]$ *exportShare _{t-1}		0.25***	
intOligopolisticMarket _{t-1}			0.17***
intNonPriceMarket _{t-1}			0.83***
$intOligopolisticMarket_{t-1}*In[inventionQuality_{t-1}]$			0.04
$In[inventionQuality_{t-1}]*intNonPriceMarket_{t-1}$			0.05*
R ²	0.18	0.18	0.18
Firm fixed effects	yes	yes	yes
Time fixed effects	yes	yes	yes
Imputation	yes	yes	yes
F .		-	-
N	7852	7852	7852

Instrument

$$\mathsf{Z} = [\mathsf{exportShare}_{t=0} \cdot \{\mathsf{boom} = 1 \land \mathsf{bust} = -1\}] \tag{3}$$

Table: IV for Patent Quality through Boom and Bust

	In[InnoSales]				
	WTO	'08 Crisis	Boom	Bust	Boom-Bust
(Intercept)	3.45***	2.03	2.64***	2.75***	3.07***
IV[patentQuality]	0.34	1.70***	0.70**	1.05***	0.79**
InFirmSize	0.33*	0.59**	0.16	0.05	0.16
$InPatentStock_{t-1}$	0.10	0.15	0.20***	0.18***	0.16***
emplShrHigher	2.90***	1.78*	2.99***	2.46***	2.68***
demandPast	-0.00	0.00	0.22**	0.28***	0.20**
techPotential	0.45***	0.38***	0.53***	0.45***	0.49***
intOligopolisticMarket	0.40***	0.03	0.30***	0.30**	0.31***
intNonPriceMarket	0.10	-0.02	0.65***	0.35**	0.54***
wagePercentileWithinCH	4.62*	-5.84**	-1.74	-5.90***	-1.73
wagePercentileWithinIndustry	-3.89	4.08	1.42	5.14***	1.33
R ²	0.08	0.01	0.13	0.05	0.07
F (p-value)	0.08	0.01	0.13	0.05	0.07
Num. obs.	1209	1259	1989	1675	1989

 $p < 0.01, \text{ *} p < 0.05, \text{ *} p < 0.1$

Random G2SLS with errors clustered on individual; time-effects not shown. Industry effects absorbed in the wage percentile variable. Scenario*exports instruments for patent quality, cf. text.

Conclusions

- We find that firms competing in larger markets produce higher quality inventions as evidenced by the increase in patent quality conditional on the export share of the companies in our sample.
- 2. we also saw that firms in a price-competitive environment tend to produce lower quality inventions;
- higher quality inventions translate directly into sales, if and only if the firm has a large market, which in our study means internationally active.