
 

 

Annex H 

New Procedures for PISA 2018 Population Modelling 

This Annex describes four procedural changes introduced to the PISA 2018 population modelling. 

These procedural changes were implemented to 1) address situations in which one or more 

subpopulations in a country/economy are oversampled, 2) incorporate process data, specifically 

response time (RT) variables, in the population modelling1, 3) model the financial literacy sample 

data, and 4) improve the modelling of the Une Heure (UH) cases.  

Before operationalising these changes, experimental and simulation studies were conducted for 

each change to assure that the new procedures would improve measurement accuracy without 

harming comparability or the measurement of trends. In the sections below, we explain the 

rationale behind these studies, describe their design, and present their results. It is important to 

note that these four changes were implemented in generating the plausible values (PVs) reported 

in the public file for the PISA 2018 main survey data. Here is a brief summary of each of the 

changes. 

1. Use of School-Level Information as Direct Covariates. Because schools are the primary 

sampling units, it is important to reflect between-school variations in the population modelling. 

In PISA 2015, this was achieved by including contrast codes of school identifiers (school ID) 

in the principal components analysis (PCA) along with other background questionnaire (BQ) 

variables. However, when a country/economy oversamples a subpopulation of interest for 

special reporting, or the oversampled subpopulation is much smaller than the 

country/economy’s overall population—resulting in a very small contribution to the overall 

population estimate after being weighted—the school information for the subpopulation may 

not be taken into account as much as it should. After studying a number of alternative 

approaches using data from Northern Ireland (as part of the United Kingdom [UK] data) as an 

example, the preferred approach was to use the leave-one-out domain-specific school-level 

weighted likelihood estimates (WLEs) as continuous covariates in the multivariate latent 

regression model. This approach, which replaced all the contrast-coded school ID variables 

with school-level WLEs for each domain, worked well in all cases with oversampling. In 2018, 

it was used for the modelling of the main sample data (11 countries/economies) and the 

financial literacy sample data (four countries/economies) where a significant variation in 

sampling rates existed. 

                                                      
1 ] Note that two item response time variables are reported in the public use files (PUF): one reported using the 
item ID with the suffix T (T variable), and one using the item ID with the suffix TT (TT variable). Considering a 
student could come back to revisit an item after visiting other items in the unit, the T variable captures the time 
spent during the last visit to the item alone, whereas the TT variable captures the aggregate time across all visits to 
the item. This last variable provides a better accounting of the total time a student may have spent responding to 
the item. However, because the TT variable was not available for the final scaling of the 2018 Main Survey data, 
results presented in this Annex as well as the final 2018 Main Survey plausible values and the group proficiencies 
statistics reported are based on the T variable. Recent population modeling re-analyses using the TT variable have 
shown that plausible values, group proficiency estimates obtained using T or TT are equivalent as differences are 
well within imputation error.  
 



 

 

2. Use of Response Time Information as Conditioning Variables. Since the implementation of 

computer-based assessment in 2015, cognitive item-level RT data have been newly available 

to the public. This information is getting more interest from researchers and practitioners who 

conduct secondary analyses using the RT data and PVs. To support making inferences about 

the relationship between RT and PV, it is important to incorporate the RT information in the 

process of generating PVs without introducing bias. Furthermore, incorporating the RT 

information in the population modelling contributes to the increase in measurement precision 

of proficiency. The approach implemented in 2018 utilised test-level variables aggregated from 

the item-level RT variables, taking into account item type and assessment hour (first or second 

hour). These new variables were contrast coded and included in the PCA along with other BQ 

variables for all CBA countries/economies where RT information was available. 

3. Modelling the Financial Literacy Sample. Unlike in PISA 2015, in 2018, the financial literacy 

domain was administered to, and analysed as, a separate sample from the main sample. In each 

of the 21 countries/economies that collected financial literacy samples, an additional sample 

of students was selected and administered the financial literacy domain and either the 

mathematics or reading domain. For more effective analyses and modelling of the financial 

literacy sample data, students from the main sample who took forms assessing both reading 

and mathematics were combined and analysed together with the financial literacy sample.  

4. Modelling Large Proportions of UH Cases. The number of UH cases has grown in some 

countries/economies, requiring some improvement in their incorporation in the population 

modelling and generation of PVs. Given that UH cases are different in their representativeness 

of the target population and also different in the instruments they are administered (for both 

the cognitive and BQ variables), the feasibility of a new approach was studied. Instead of 

including the UH cases in a single conditioning model estimated in each country/economy as 

was done in 2015, a mixed approach was used. In this mixed approach, to generate PVs for the 

non-UH cases, the population model parameters were estimated using only the non-UH cases 

and the entire set of BQ questions (full model2). In contrast, to generate PVs for the UH cases, 

the population model parameters were estimated using the entire sample (including both the 

UH cases and non-UH cases), but only the subset of BQ questions administered to the UH 

students was included (reduced model). The full model is used to generate PVs for the non-

UH students, and the reduced model is used to generate PVs for UH students – PVs for non-

UH cases generated from the reduced model were discarded. For the reduced model, the UH 

indicator variable is specified as a direct dummy-coded covariate instead of being processed 

through the PCA. The latter was the method used in 2015. For the full model, the UH indicator 

variable is not used because the full model only involves non-UH cases. This new approach 

was implemented in 2018 for five countries/economies with a relatively large number of UH 

cases (more than 200 cases included in the main sample), and the 2015 approach was used for 

the other countries with a smaller number of UH cases. 

As a reminder, the population modelling in PISA refers to the combination of item response theory 

and multivariate latent regression modelling (IRT-LRMs)—the latent abilities being regressed 

onto the BQ information. Operationally, students’ latent abilities are estimated based on the 

                                                      
2 Note that ‘full model’ in the 2018 approach is different from the 2015 approach. The 2015 approach used the 
complete dataset including UH cases and non-UH cases for estimating latent regression parameters, while the ‘full 
model’ in 2018 approach used only the non-UH cases for estimating latent regression parameters. Both the ‘full 
model’ in the 2018 approach and the 2015 approach use the entire set of BQ questions.  



 

 

cognitive item responses, and the item parameters are fixed to the estimates obtained from the 

unidimensional IRT scaling stage for each domain (von Davier & Sinharay, 2014). To 

accommodate the large numbers of BQ variables available from the international and 

country/economy-specific BQ, PCA is conducted as a variable reduction technique, and the 

extracted principal components (PCs) are used as conditioning variables in the model. This 

approach has a long history in large-scale assessment and is often referred to as principal 

components regression (Jolliffe, 1982).  

Since PISA 2015, the IRT scaling has used all international data, and both international and 

country-by-language group-specific item parameters have been estimated. Then, a multivariate 

latent regression model is fitted for each country/economy. The number of PCs to be included in 

the latent regression model is determined by the number of PCs that explain 80% of the total BQ 

variance for the country/economy, or 5% of the raw student sample size per country/economy, 

whichever is less. These criteria ensure that the estimated model captures a large amount of 

information in the conditioning variables, but at the same time, avoids overparameterization of the 

model, which could lead to unstable outcomes and erroneous inferences (OECD, 2017). With these 

criteria in place, a large but limited number of extracted PCs can be specified as covariates in the 

multivariate latent regressions.  

For PISA 2018, it is important to note that the multistage adaptive testing (MSAT) routing path 

information is not used as an additional variable to define the groups used in the multiple-group 

IRT models or as a covariate for student characteristics in the multivariate latent regressions. This 

decision is based on theoretical research (Glas, 1988; Jewsbury, Lu, & van Rijn, 2019) and 

simulation studies (van Rijn & Shin, 2019).3 Because routing decisions in PISA are largely based 

on cognitive responses (i.e., sum scores based on the machine-scored items), using this information 

again as covariates in the multivariate latent regression would violate the conditional independence 

assumptions underlying the IRT-LRMs. More details about the PISA 2018 reading MSAT designs 

and related outcomes and considerations can be found in Chapters 2, 9, and 12 of the technical 

report and in an OECD working paper (Yamamoto, Shin, & Khorramdel, 2019). 

Change 1: Use of School-Level Information as Direct Covariates 

As stated above, PCA is used as a variable-reduction technique as a preliminary step in the 

population modelling. Using PCA allows for the accommodation of the large number of contextual 

variables collected in the PISA BQ. Previous studies have found that PCA performs well as a 

dimension-reduction technique in group-level reporting situations (e.g., Mislevy, 1991).  

However, Jolliffe (1982) explicitly stated that principal components regression analysis can have 

a problem when only the PCs with the highest eigenvalues are retained. That is, important 

information may still exist in the PCs with smaller eigenvalues. This possibility was argued by 

Benton (2019) who showed that PCA could potentially lead to bias in parameter estimation for 

                                                      
3 Note that the Programme for the International Assessment of Adult Competencies (PIAAC) takes different 
approaches than PISA (OECD, 2013), although PIAAC implements the MSAT designs for all domains as well. The 
major difference is that PIAAC uses the MSAT routing path information as covariates in the multivariate latent 
regression because external variables (e.g., education level and native-versus-nonnative speaker) in addition to the 
cognitive item responses are used in the routing decision. 



 

 

some subgroups of students with relatively small sampling weights, as the PCA is conducted using 

weighted data. If a subgroup or subgroups were not prevalent in the full population, information 

specific to the subgroups (e.g., regional differences) would not be retained.  

For example, in PISA 2015, students from Northern Ireland (NIR) were deliberately oversampled 

as part of the UK main sample, and 2,401 students from NIR participated in PISA 2015 (17% of 

the UK’s sample). When the national sampling weights in the PISA data were used, NIR’s students 

were estimated to constitute only 3% of the UK’s 15-year-old school population.4 Therefore, after 

weighting, the variable indicating whether a student attended a school in NIR could only account 

for an extremely small proportion of the total variance, and therefore, the PCA assigned little 

priority to retaining this information. To address this issue, an alternative approach was proposed 

and studied to retain the uniqueness of the schools. This alternative approach was to use the 

aggregated school-level information as direct continuous covariates in the multivariate latent 

regression models (instead of first processing contrast codes of school IDs through the PCA). Note 

that in this alternative approach, all the remaining BQ variables were processed through the PCA, 

as was done in PISA 2015. The only difference in 2018 was that the aggregated school-level 

information was included as direct continuous covariates in the multivariate latent regression 

models, in addition to the PCs extracted from the PCA. 

In the study designed to investigate this issue, the NIR data collected in the 2015 cycle were used 

to examine the feasibility of alternative approaches. As noted, the NIR data (N=2,401) were an 

oversample within the UK sample (N=11,046)5—NIR data represented about 17% of the total UK 

sample when unweighted, but only about 3% of the total UK sample when weighted. First, we 

investigated if a separate population model for NIR (i.e., treating NIR as a separate 

country/economy) could be a feasible option. To address this possibility, two alternative 

population modelling runs using only the NIR data were carried out: 1) with contrast-coded school 

IDs (same procedure as in PISA 2015), and 2) without school IDs. These two alternative runs can 

be considered to be “smaller” models due to the smaller sample size, which resulted in a fewer 

number of PCs based on the 5% sample size rule for the NIR-only data. In particular, the 

comparison between the first model (NIR data with school IDs) and the second model (NIR data 

without school IDs) was expected to indicate the impact of the uniqueness of the NIR schools. 

Moreover, the comparison of the first model (NIR data with school IDs) and the reported 2015 

results were expected to show the impact of the uniqueness of the NIR schools in addition to the 

effect of having a smaller population model.  

Table H.1 presents the results from the PCA for the reported 2015 results and the two alternative 

runs of smaller population models. Note that the number of PCs for the two alternative runs was 

based on the one-twentieth sample size rule, while the number of PCs for the reported 2015 UK 

results was based on the 80% explained variance rule.  

Table H.1. Results from principal components analyses 

 N Number of PCs % of Explained Variance 

                                                      
4 Note that in PISA 2015, contrast codes of school IDs were included in the PCA, along with other BQ variables. 
5 Note that the UK sample excluded Scotland, which participates through a separate national centre, but included 
the NIR oversample. 



 

 

in BQ 

Reported 2015 UK 11,046 505 80.01 

(1) NIR with school ID 2,401 120 57.99 

(2) NIR without school ID 2,401 120 62.86 

As can be seen from Table H.1, the two population models that used only NIR data resulted in a 

much smaller proportion of explained variance in the BQ. Therefore, it is expected that the smaller 

population models would yield increased measurement errors compared to the larger population 

model that was used to report UK results in 2015. This is confirmed in terms of the standard 

deviation (SD) of the PVs reported in Table H.2. The table presents the summary of the PVs with 

respect to their means and SDs for each domain based only on the NIR data (N=2,401). Although 

the PV means seem quite similar across the three different population modelling strategies, except 

for the Collaborative Problem Solving (CPS) domain,6 a comparison of the reported 2015 results 

to both of the smaller population models indicates that the SD of the PVs is much larger in the 

smaller population models—as much as 12–27% in the core domains (mathematics, reading, and 

science) and as much as 21% in the CPS domain.  

Table H.2. Comparison of plausible value-based statistics under alternative modelling approaches for 
Northern Ireland only (2015) 

NIR data 

only 
Reported 2015 With School ID Without School ID 

N=2,401 Mean (SE) SD (SE) Mean (SE) SD (SE) Mean (SE) SD (SE) 

Math 492.8 (4.6) 77.5 (2.0) 493.7 (4.7) 98.4 (4.7) 497.8 (4.8) 96.1 (4.4) 

Reading 497.0 (4.6) 83.8 (2.0) 504.0 (5.7) 101.7 (3.0) 503.9 (5.5) 102.5 (4.6) 

Science 500.1 (2.8) 89.8 (2.0) 500.6 (3.7) 100.4 (2.5) 499.1 (4.1) 99.9 (2.7) 

CPS 514.0 (3.7) 88.1 (1.9) 521.5 (5.6) 106.5 (3.8) 518.2 (4.6) 106.2 (5.3) 

Note: CPS = Collaborative Problem Solving 

A comparison of the two smaller models (with school ID vs. without school ID) indicates the 

unique effect of having contrast codes of the school IDs, given the smaller population model that 

was used. Note that in the PCA, all contrast codes of the school IDs were included in the first 

modelling approach (NIR data with School IDs); thus, it was expected that the differences across 

schools would be reflected better in this approach than in the second modelling approach (NIR 

data without school IDs). When the results were compared, however, the effect of having school 

IDs seemed negligible in terms of the difference in PV means and SDs. Rather, the more important 

finding here is that smaller population models that used only NIR data resulted in much larger 

SDs. 

From the comparison of the three models in Tables H.1 and H.2, for the overall reported results 

for NIR in 2015, the single larger population modelling combined with UK appears to be more 

precisely estimated with smaller measurement errors. As a next step, given that a larger population 

                                                      
6 When the largest difference in the PV means among the three models was less than one standard error, the 
difference was considered to be insignificant and negligible. For example, in reading, (504-497)/sqrt(4.6^2+5.7^2) 
resulted in 0.96, which is less than 1. Thus, the PV means in reading across the three models were considered to be 
more precisely estimated. 



 

 

model is more desirable, several alternative approaches were attempted and discussed at the 

Technical Advisory Group (TAG) meeting. Eventually, the final approach chosen was to use the 

leave-one-out (LOO) domain-specific school-level WLEs as direct covariates in the multivariate 

latent regression model (School-Level WLEs). More specifically, domain-specific school-level 

WLEs were assigned to individual students by averaging students’ WLEs for the given school 

excluding that corresponding student (i.e., LOO). Unlike most of the BQ variables, these 

covariates were not processed as part of the PCA, but included in the multivariate latent regression 

model as direct continuous covariates along with the extracted PCs. Note that the use of school-

level averages of the WLEs including the corresponding student would violate the conditional 

independence assumption (i.e., independence between the covariates and the item responses, 

conditional on the latent ability) required in IRT-LRMs (Jewsbury et al., 2019; Thomas, 2002). 

However, by excluding the corresponding student (i.e., LOO), this violation does not occur. In 

practice, LOO did not introduce any discernible differences in the school means in most cases. 

Table H.3 presents comparisons between the two approaches using the same 2015 data from the 

UK (excluding Scotland, which participates through a separate national centre, but including the 

NIR oversample; N=11,046): 1) using contrast codes of the school IDs (2015 approach) and 2) 

using the continuous school-level WLEs (2018 approach). Note again that these results were from 

a single larger population model and were summarised for NIR and for the whole population of 

the UK. For the UK (including the NIR oversample; N=11,046), the PV-based means and SDs 

look quite similar between the two approaches. In addition, for the UK, the distances between the 

5th and 95th percentiles look similar between the two approaches, the 2015 approach and 2018 

approach. For the NIR oversample (N=2,401), the PV-based means looked similar between the 

two approaches as are seen from the UK sample. However, the PV-based SDs, as well as the 

distances between the 5th and 95th percentiles, were greater for the school-level WLEs approach. 

Using this UK and NIR example, it was inferred that the school-level WLEs allowed for a greater 

degree of between-school variation to be retained in the imputations for students in NIR. 

Table H.3. Comparison of plausible values-based statistics under alternative modelling approaches 
(United Kingdom, 2015)  

UK7 

(N=11,046) 

Contrast codes of school IDs  

(2015 approach) 

School-level WLEs 

(2018 approach) 

Mean 

(SE) 

SD  

(SE) 

5th 

Percent.  

95th 

Percent. 

Mean 

(SE) 

SD  

(SE) 

5th 

Percent.  

95th 

Percent. 

Math 
492.6 

(2.7) 

93.3 

(1.4) 

336.0 

(4.5) 

642.0 

(4.1) 

492.8  

(2.6) 

91.4  

(1.3) 

338.2 

(3.9) 

639.3 

(4.0) 

Reading 
498.4 

(3.0) 

97.2 

(1.2) 

336.0 

(4.7) 

654.8 

(4.5) 

498.9 

(2.7) 

96.6 

(1.3) 

336.6 

(5.2) 

654.4 

(4.1) 

Science 
510.3 

(2.8) 

100.0 

(1.1) 

345.2 

(3.2) 

671.8 

(3.7) 

510.2  

(2.8) 

99.6 

(1.1) 

345.1 

(3.6) 

670.5 

(3.6) 

CPS 
519.7 

(2.9) 

103.3 

(1.2) 

348.1 

(4.5) 

687.2 

(4.2) 

519.9 

(2.6) 

102.4  

(1.3) 

348.2 

(4.6) 

684.6 

(4.3) 

NIR 

(N=2,401) 

Contrast codes of School IDs 

(2015 approach) 

School-level WLEs 

(2018 approach) 

Mean SD 5th 95th Mean SD  5th 95th 

                                                      
7 Note that United Kingdom (UK) sample excluded Scotland, which participates through a separate national centre, 
but included the NIR oversample. 



 

 

(SE)  (SE) Percent.  Percent. (SE) (SE) Percent.  Percent. 

Math 
492.8 

(4.6) 

77.5 

(2.0) 

363.5 

(6.1) 

616.6 

(6.8) 

495.9 

(3.6) 

81.3  

(1.9) 

359.5 

(5.5) 

624.2 

(5.4) 

Reading 
497.0 

(4.6) 

83.8 

(2.0) 

355.8 

(7.0) 

632.0 

(6.8) 

497.1 

(3.5) 

86.4 

(2.1) 

351.6 

(5.7) 

636.0 

(5.5) 

Science 
500.1 

(2.8) 

89.8 

(2.0) 

352.3 

(4.8) 

644.3 

(4.6) 

500.5 

(3.1) 

91.6 

(1.9) 

349.6 

(4.8) 

648.7 

(4.2) 

CPS 
514.0 

(3.7) 

88.1 

(1.9) 

365.5 

(6.6) 

653.9 

(5.2) 

515.8 

(3.5) 

89.4 

(1.8) 

363.6 

(5.8) 

656.0 

(6.3) 

Although the school-level WLEs approach appears promising for retaining between-school 

variation in the imputation with the example of NIR, it was practically impossible to accommodate 

this change for all participating countries/economies in the PISA 2018 main survey within the 

existing timeline. Thus, this new approach was only applied to the main sample from 11 

countries/economies that significantly oversampled certain subpopulations for which they desired 

more detailed reports. Based on the ratio between the minimum and maximum of the student 

weights (i.e., minimum/maximum of the student weights < 0.01), the following 

countries/economies were selected to have the new 2018 approach applied: Argentina, B-S-J-Z 

(China), Colombia, France, Indonesia, Italy, Korea, the Russian Federation (and the three regions), 

Spain, Thailand, and the UK (excluding Scotland). For the six countries/economies that assessed 

global competence, a four-dimensional latent regression model (i.e., for mathematics, reading, 

science, and global competence) was applied, while for the five countries/economics that did not 

assess global competence, a three-dimensional latent regression model (i.e., for mathematics, 

reading, and science) was applied. This new approach was also applied when producing the reading 

subscale PVs, except for the one paper-based country/economy (Argentina), for which the reading 

subscales were not reported. Finally, this new approach was also applied to the financial literacy 

sample from four countries/economies (Indonesia, Italy, the Russian Federation, and Spain). For 

the rest of the countries/economies, the 2015 procedure was retained (i.e., contrast codes of the 

school IDs used in the PCA with other BQ variables, and the extracted PCs used as covariates in 

the multivariate latent regressions).  

For the main sample from the 11 countries/economies for which the new school-level WLEs 

approach was applied, further comparisons were made to evaluate the differences with respect to 

the percentages of proficiency level changes between the 2015 approach and the new 2018 

approach. Figure H.1 illustrates the differences in the percentages of proficiency levels (2018 

approach – 2015 approach). It illustrates that the largest absolute difference is smaller than 0.8 

percentage points across all domains and countries/economies, and for the major domain of 

reading, the range of differences is between –0.4 to 0.2 percentage points. Therefore, changing to 

the school-level WLEs approach for countries/economies that significantly oversampled certain 

subpopulations would only have marginal effects on the country/economy rankings and students’ 

level proficiencies. However, in principle, and as illustrated with the NIR example, this new 

approach allows for a better description of the subgroup skill distributions (e.g., regional 

differences) by better reflecting between-school variations.  



 

 

Figure H.1. Comparison of percentage of proficiency levels between 2015 approach and 2018 approach 

 

Change 2: Use of Response Time Information as Conditioning Variables 

The second change is a first step toward incorporating process data, in particular, RT information 

(i.e., time spent on the item), into the population modelling. RT information has much potential to 

contribute to data quality investigations, thereby enhancing the validity and reliability of the test 

results. For example, educational researchers have shown a keen interest in using RT and process 

data to evaluate the validity of cognitive responses and to provide insight into test-taking strategies, 

motivation, and engagement of both individuals and groups (e.g., Goldhammer, Martens, 

Christoph, & Lüdtke, 2016; Lee & Haberman, 2016; Lee & Jia, 2014; Meyer, 2010; van der Linden 

& Guo, 2008; van der Linden & Sotaridona, 2006; Weeks, von Davier, & Yamamoto, 2016).  

For PISA, incorporating RT information into the IRT-LRMs is important for the following reasons. 

First, if the RT variables have not been used to generate the PVs but are available in the public 

database, secondary analyses estimating the relationship between the PVs and the RT variables 

may be biased (Meng, 1993; Mislevy, 1991). In addition, RT information may uniquely contribute 

to the prediction of proficiency and, therefore, improve the quality of the PVs and increase 

measurement precision (Mislevy, 1991; von Davier, Khorramdel, He, Shin, & Chen, 2019; Shin, 

Jewsbury, & van Rijn, 2019). In particular, two recent studies (Shin, Jewsbury, & van Rijn, 2019; 

Shin, Yamamoto, Khorramdel, Robin, von Davier, Gamble, & Zhao, 2019) revealed that 

incorporating RT information into the PISA population modelling is promising because the 

inclusion of RT variables resulted in a substantial increase in the measurement precision of 

proficiency (i.e., greater explained variance) with negligible differences in the regression 

coefficient estimates specified in the LRMs. Using PISA 2015 data, it was found that the gain in 

measurement precision was about 16%.  



 

 

One remaining concern is the violation of the conditional independence assumption in the IRT-

LRM because RT data is recorded at the item level; incorporating both the RT data and item 

responses for the same item, if correlated, can violate the conditional independence assumption of 

IRT. Although limited, the empirical study conducted by Shin, Jewsbury, and van Rijn (2019) 

revealed that the differences in the estimates of regression coefficients when RT was included or 

excluded are negligible, and the benefits of incorporating RT outweigh the potential bias from 

violating the conditional independence assumption. Therefore, experimental studies were 

conducted to evaluate the incorporation of RT information in the PISA 2018 population modelling 

through careful data processing of the RT variables. Another special consideration when 

processing the RT data is that item type should be considered in PISA with multiple languages in 

a mixed-format test (i.e., a mixture of multiple-choice items and constructed-response items; 

Yamamoto, 2019; Shin, Kerzabi, Joo, Robin, & Yamamoto, 2020). When the latent correlations 

between the RT scales of constructed-response and multiple-choice items were estimated, the 

mean and median of the correlations were both approximately .50, and the highest correlation was 

approximately .70. This implies that the RT scales measured by different item types are distinct, 

and each RT scale provides somewhat unique information that is not captured by the RT scale of 

another item format.  

Therefore, following previous studies, the RT variables were treated as person covariates (e.g., 

proxy of working speed) in the population modelling of the PISA 2018 data. Item-by-person 

interactions were reduced by standardising and aggregating item-level RT variables within a 

country/economy. That is, for each item, the original continuous RT variable (recorded in 

milliseconds) was converted to deciles: Students who answered the item were ranked for each 

item, and these students were categorised into one of the ten ordered groups from the fastest to the 

slowest responders in each country/economy, creating a decile RT variable for each item. The 

item-level decile RT variables were then aggregated across items per assessment hour, regardless 

of the domain, based on two different approaches:  

1. Summarise item-level RT deciles by hour (RT by hour)8 so that each student receives 

four summarised RT variables. These four RT variables were 1) mean of the item-level 

RT deciles across items administered in Hour 1; 2) SD of the item-level RT deciles 

across items administered in Hour 1; 3) mean of the item-level RT deciles across items 

administered in Hour 2; and 4) SD of the item-level RT deciles across items 

administered in Hour 2.  

2. Summarise the item-level RT deciles by item type and hour (RT by item type and by 

hour) so that each student receives eight summarised RT variables. Similar to the 

method above, RT data were aggregated again, this time including an additional factor 

of item type, as recommended by Shin et al. (2020). That is, item-level RT deciles were 

aggregated not only by hour, but also by item type (machine- vs. human-coded items9). 

The means and SDs of the item-level RT deciles were computed by hour and by item 

type, resulting in eight variables for individual students. Thus, each student has four 

                                                      
8 The assessment was divided into two “hours” or sessions. During each of the sessions, the items for the major 
domain were administered (using the MSAT design) or two clusters from the minor domains were administered. 
9 For the analyses presented in this document and for the PISA 2018 population modelling, item types included 
machine- and human-coded items. All human-coded items were constructed response items, while only a few 
machine-coded items were constructed response items. 



 

 

RT variables for Hour 1: 1) mean of the item-level RT deciles across machine-coded 

items administered in Hour 1; 2) SD of the item-level RT deciles across human-coded 

items administered in Hour 1; 3) mean of the item-level RT deciles across machine-

coded items administered in Hour 1; and 4) SD of the item-level RT deciles across 

machine-coded items administered in Hour 1. Another set of these four variables was 

created for the second hour, resulting in eight variables in total.  

Means and SDs of the item-level RT deciles for each assessment hour (RT-by-hour approach) and 

for each assessment hour and by item type (RT-by-item-type-and-hour approach) were then further 

converted to deciles so that the categorical decile values could be contrast coded and included in 

the PCA, as with the other BQ variables. By taking the mean RT over items and then again over 

deciles, the relationship between RT and response at the item-level is almost nonexistent, which 

makes the chance of violating the conditional independence assumption remote. 

For this experimental study, the following 11 countries/economies (covering a wide range of 

performance levels and cultures) were used: Australia (AUS), Brazil (BRA), Costa Rica (CRI), 

France (FRA), Germany (DEU), Greece (GRC), Japan (JPN), Korea (KOR), Mexico (MEX), the 

Netherlands (NLD), and the United States (USA). The two approaches above were implemented 

independently for the PCA, and subsequently, LRMs were fitted for each condition and compared 

to a baseline model that did not include any RT information (2015 approach).  

Table H.4 presents the number of PCs retained for each model and the corresponding fit statistics 

as a measure of the model fit. Note that the two RT approaches and the baseline model had the 

same number of PCs based on 5% of the sample size of the country/economy. Lower values (i.e., 

higher absolute value) indicate a better fit when the same item responses and the same number of 

PCs were used (Educational Testing Service [ETS], 2012). Although the same number of PCs was 

retained across the three models for each country/economy, the composition of the PCs changed. 

Therefore, the comparison shows which set of PCs provide the best relative predictive power. As 

Table H.4 shows, for all 11 countries/economies, the RT-by-item-type-and-hour approach always 

showed better fit compared to both the baseline model and the RT-by-hour approach. 

Table H.4. Comparison of model fit across three models 

Country/Economy 
Number of 

PCs 
Baseline RT-by-hour RT-by-item-type-and-hour 

AUS 714 -17631.4 -18559.8 -19093.5 

BRA 538 -19912.3 -20273.3 -20565.7 

CRI 330 -26374.7 -26496.1 -26664.0 

DEU 267 -7461.33 -7621.59 -7835.68 

FRA 315 -10213.1 -10400.2 -10645.9 

GRC 320 -21281.6 -21478 -21671.2 

JPN 305 -8609.26 -8824.76 -8966.47 

KOR 332 -21372.1 -21598.6 -21817.9 

MEX 365 -13705.4 -13815.8 -13908.4 

NLD 195 -6158.64 -6364.11 -6436.61 

USA 253 -7074.13 -7300.73 -7349.27 



 

 

PV-based reliabilities and correlations among the 10 PVs were further calculated to evaluate the 

performance of the three models. Table H.5 reports the PV-based reliabilities (OECD, 2017) from 

the three different models, and Table H.6 presents the distribution of the correlations among the 

10 PVs after aggregating across the 11 countries/economies. Both tables show that only negligible 

differences were observed with respect to these PV-based statistics across the three different 

models. 

Table H.5. Comparison of PV-based reliabilities across three models 

 Baseline RT-by-hour RT-by-item-type-and-hour 
 Math Reading Science Math Reading Science Math Reading Science 

AUS 0.842 0.927 0.880 0.842 0.929 0.881 0.842 0.928 0.880 

BRA 0.826 0.922 0.858 0.825 0.922 0.862 0.825 0.923 0.865 

CRI 0.805 0.905 0.845 0.802 0.906 0.847 0.804 0.906 0.849 

DEU 0.870 0.933 0.894 0.870 0.933 0.896 0.868 0.933 0.897 

FRA 0.864 0.933 0.884 0.867 0.932 0.887 0.864 0.935 0.887 

GRC 0.802 0.926 0.846 0.805 0.926 0.851 0.807 0.926 0.852 

JPN 0.838 0.919 0.877 0.837 0.920 0.876 0.839 0.919 0.876 

KOR 0.852 0.919 0.878 0.850 0.920 0.878 0.850 0.920 0.882 

MEX 0.803 0.905 0.851 0.798 0.907 0.850 0.801 0.906 0.849 

NLD 0.858 0.930 0.881 0.861 0.931 0.883 0.862 0.931 0.884 

USA 0.865 0.937 0.890 0.864 0.936 0.893 0.864 0.937 0.892 

Table H.6. Distribution of pairwise correlations among 10 PVs across three models 

 Baseline RT-by-hour RT-by-item-type-and-hour 

 Mean SD Mean SD Mean SD 

Mathematics 0.880 0.001 0.880 0.001 0.880 0.001 

Reading 0.935 0.000 0.935 0.000 0.935 0.000 

Science 0.898 0.001 0.899 0.001 0.900 0.001 

At the country/economy level, note that the actual differences across the three approaches in the 

residual variances, posterior means, and posterior SDs were very small. For instance, Table H.7 

compares the residual variance estimates for the three approaches for mathematics, reading, and 

science across the 11 countries/economies. This table shows that the RT-by-item-type-and-hour 

approach always showed the lowest or almost the lowest residual variance estimates in all domains 

in all countries/economies, suggesting that the predictive power was increased in the LRM with 

PCs extracted under this approach. When the country/economy-level posterior means and SDs 

were examined, Tables H.8A and H.8B showed that the three approaches resulted in almost 

identical results. Thus, including RT would not threaten the trends. 

Table H.7. Difference in residual variances for two alternative approaches against the baseline approach 
in mathematics, reading, and science (before transformation to the PISA scale) 

 Baseline - By hour Baseline - By item type and hour 

Mathematics Reading Science Mathematics Reading Science 



 

 

AUS 0.007 0.016 0.007 0.012 0.023 0.012 

BRA 0.002 0.005 0.003 0.005 0.009 0.005 

CRI 0.001 0.001 0.001 0.002 0.004 0.002 

DEU 0.003 0.006 0.003 0.007 0.014 0.007 

FRA 0.002 0.004 0.003 0.005 0.011 0.006 

GRC 0.003 0.004 0.003 0.007 0.010 0.005 

JPN 0.005 0.007 0.003 0.009 0.010 0.006 

KOR 0.003 0.006 0.004 0.008 0.011 0.008 

MEX 0.001 0.002 0.001 0.001 0.005 0.002 

NLD 0.005 0.007 0.005 0.006 0.010 0.006 

USA 0.004 0.009 0.006 0.005 0.011 0.008 

Tabe H.8A. Difference in posterior means for two alternative approaches against the baseline approach 
in mathematics, reading, and science (before transformation to the PISA scale) 

 Baseline - By hour Baseline - By item type and hour 

Mathematics Reading Science Mathematics Reading Science 

AUS 0.000 0.001 0.000 0.000 0.002 0.002 

BRA -0.001 -0.001 -0.001 0.001 -0.001 -0.002 

CRI -0.002 -0.001 0.000 -0.002 -0.001 0.000 

DEU 0.000 0.000 0.000 0.000 0.000 0.000 

FRA -0.002 0.000 0.002 -0.002 0.000 0.002 

GRC 0.001 0.000 -0.002 0.000 0.000 -0.001 

JPN 0.000 0.001 0.001 -0.003 0.000 0.002 

KOR 0.000 0.000 0.001 0.000 0.000 0.002 

MEX 0.000 0.000 -0.001 0.001 -0.001 0.000 

NLD 0.000 0.000 0.002 0.001 0.000 0.001 

USA 0.000 0.001 0.001 0.000 0.001 0.001 

Table H.8B. Difference in posterior SDs for two alternative approaches against the baseline approach in 
mathematics, reading, and science (before transformation to the PISA scale) 

 Baseline - By hour Baseline - By item type and hour 

Mathematics Reading Science Mathematics Reading Science 

AUS 0.000 0.001 0.001 0.001 0.001 0.002 

BRA -0.001 0.000 0.000 -0.001 0.000 0.001 

CRI 0.000 0.000 0.001 0.002 0.000 0.001 

DEU 0.000 0.000 0.001 0.000 0.000 0.001 

FRA -0.001 0.000 0.001 0.002 0.000 0.001 

GRC -0.001 0.000 0.000 -0.002 0.000 0.000 

JPN -0.001 0.000 0.001 0.001 0.000 0.001 

KOR 0.000 0.000 0.001 0.000 0.001 0.000 



 

 

MEX 0.000 0.000 0.001 0.001 0.000 0.001 

NLD 0.002 0.001 -0.001 0.000 0.001 -0.001 

USA -0.001 0.001 0.002 -0.002 0.000 0.002 

Although PISA is not targeted at individual-level reporting, a further comparison at the individual 

level was conducted across the three different approaches. As an example, the posterior means and 

posterior SDs for the three PISA domains of one country/economy are presented in Figures H.2A 

and H.2B. Figure H.2A indicates that the baseline model and the RT-by-item-type-and-hour 

approach generated similar individual-level posterior means, and it appears the results are more 

similar between the two models for reading than for mathematics or science. This is probably 

because, according to the design, all students took reading, while some students did not take 

mathematics or science, thus, their results are purely model dependent. Figure H.2B shows the 

differences in individual-level posterior SDs between the baseline model and the RT-by-item-type-

and-hour approach. For reading and science, most of the students had smaller posterior SDs at the 

individual level when the RT-by-item-type-and-hour approach was used, indicating that 

measurement precision improved with this approach. For mathematics, at least half the students 

showed improved measurement precision when the RT-by-item-type-and-hour approach was used. 

Although not presented, this pattern of reduced posterior SD at the individual level under the RT-

by-item-type-and-hour approach was consistently observed for all countries/economies.  



 

 

Figure H.2A. Comparison of individual-level posterior means between the baseline model and the RT-by-
item-type-and-hour approach for mathematics, reading, and science (after transformation to the PISA 
scale) for a certain country/economy 

 



 

 

Figure H.2B. Histogram of differences in individual-level posterior SDs between the baseline model and 
the RT-by-item-type-and-hour approach for mathematics, reading, and science (before transformation to 
the PISA scale) for a certain country/economy

  

This set of experimental studies can be summarised as follows. First, a similarity in 

country/economy- and individual-level posterior means was observed across the three approaches, 

implying that there would not be much impact if RT information was used in the population 

modelling for the 2018 cycle. Second, given that there is no expected harm to the trends, smaller 

residual variance estimates and better model fits in all 11 countries/economies suggest that 

including RT information can improve the predictive power in the LRMs. Third, such gains seem 

to have been obtained through improved measurement precision at the individual level with 

reduced posterior SDs. Therefore, RT information was incorporated in the PISA 2018 population 

modelling using the RT-by-item-type-and-hour approach as described above. Further studies will 

be conducted to optimise the process of extracting information from the RT variables without 

introducing biases through the violation of the conditional independence assumption of the IRT-

LRMs.  

Change 3: Modelling the Financial Literacy Sample  

The assessment of financial literacy was offered as an international option in PISA 2018. In total, 

21 countries/economies opted to administer this assessment. The cognitive instruments included 

trend items from 2012 and 2015, as well as a set of new interactive items that were developed 

specifically for PISA 2018. Note that financial literacy was available only in the computer-based 

assessment mode. As a reminder, in PISA 2015, the financial literacy assessment was administered 



 

 

to a subset of students from the main sample during additional testing time. However, in 2018, 

financial literacy was administered to a separate sample of PISA-eligible students who took a 

combination of reading, mathematics, and financial literacy items. The group of students who took 

the financial literacy assessment are referred to as the Financial Literacy sample.  

Countries/economies administering the financial literacy instruments required 1,650 additional 

students in the sample. Each student taking the financial literacy assessment took the financial 

literacy items in addition to the mathematics or reading items, with the reading items administered 

in the same adaptive mode as in the main sample, including the reading fluency tasks. Students 

taking the financial literacy assessment did not take any science or global competence items. 

Therefore, financial literacy sample students received PVs in mathematics, reading, and financial 

literacy.  

The financial literacy sample data were used for the IRT scaling to estimate the financial literacy 

item parameters, but were not used to estimate the reading or mathematics item parameters. When 

estimating the multivariate latent regression models, the financial literacy sample was combined 

with the sample of students from the main sample who took reading and mathemetics only. This 

was done to establish a stable linkage between the financial literacy and the main PISA forms and 

between the reading and mathematics domains. RT information was used as conditioning variables 

in all countries/economies, but the newly developed school-level WLEs as continuous covariates 

was applied only to the four countries/economies with a significant amount of oversampling (i.e., 

Indonesia, Italy, Russian Federation, and Spain). 

By design, the financial literacy sample is a randomly selected group of students, and thus, their 

posterior distributions are expected to be comparable to those of the main sample students in 

mathematics and reading. Figure H.3 presents the comparison of the posterior means in 

mathematics and reading between the main sample and the financial literacy sample for the 21 

countries/economies that administered financial literacy. Except for one country/economy (which 

had a very large amount of cases in the main sample and only a small amount of cases in the 

financial literacy sample), all countries/economies showed almost identical posterior means in 

reading and mathematics.  

Figure H.3. Posterior means of the main sample and the financial literacy sample for mathematics and 
reading (after transformation to the PISA scale) 
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Change 4: Modelling Large Proportions of UH Cases 

The UH assessment option for special-needs students was provided in 2015 and 2018. Students 

who took the UH assessment are different in their representativeness of the target population and 

in the instruments that were administered to them, both for the cognitive assessment and the BQ. 

Students taking the UH instrument take the UH version of the student BQ, which consists of a 

subset of items from the regular student BQ. Due to these differences, in this experiment, the 

proficiency estimates of the UH students were calculated through a reduced conditioning model 

that involved only the subset of BQ variables included in the UH version.  

The experiment here was designed to see if the reduced conditioning model would generate results 

comparable to the full model that used all items in the regular BQ. Instead of including the UH 

cases in a single conditioning model estimated in each country/economy, as was done in 2015, a 

mixed approach was attempted. In this mixed approach, to generate PVs for the non-UH cases, the 

population model parameters were estimated using only the non-UH cases and the entire set of BQ 

questions (full model). In contrast, to generate PVs for the UH cases, the population model 

parameters were estimated using the entire sample (including both the UH cases and non-UH 

cases), but only the subset of BQ questions administered to the UH students was included (reduced 

model). The full model is used to generate PVs for the non-UH students, and the reduced model is 

used to generate PVs for UH students – PVs for non-UH cases generated from the reduced model 

were discarded. For the reduced model, the UH indicator variable was specified as a direct dummy-

coded covariate instead of being processed through the PCA. For the full model, the UH indicator 

variable was not used because the full model only involved non-UH cases.  

For the experiment, data from Costa Rica, Germany, and the Netherlands were used, as these three 

countries/economies were considered to have a relatively large number of UH students.10 At the 

overall country/economy level, the full model and the reduced model generated similar results in 

terms of residual variances, cross-subject correlations, posterior means, and posterior SDs for 

mathematics, reading, and science. As expected, the full model generated slightly smaller residual 

variances for all three domains. The dataset of each country/economy was then disaggregated into 

UH and non-UH cases, and the proficiency estimates for the two models were compared. For the 

non-UH cases, the group-level posterior means and SDs for the two models were similar. For the 

UH cases, the posterior mean estimates were similar between the two models, but the posterior SD 

estimates were smaller for the full model, as shown in Figure H.4. This was interpreted as a sign 

of overfitting, since the additional variables included in the full model did not contain any 

information about the UH cases. The comparisons suggested that the reduced model generated 

reasonable proficiency estimates for the UH cases. Therefore, a mixed approach was used to 

produce PVs for the five countries/economies in which more than 200 cases included in the main 

sample were UH cases (i.e., Canada-English speaking, Canada-French speaking, Costa Rica, 

Denmark, and the Netherlands). The 2015 approach was used for the other countries with a smaller 

number of UH cases. 

                                                      
10 In 2018, Costa Rica, Germany, and the Netherlands had 607 UH cases, 98 UH cases, and 851 UH cases, 
respectively. Given that the new mixed approach was applied to countries/economies in which more than 200 
cases included in the main sample were UH cases, the new approach was not used to generate PVs for UH cases in 
Germany, even though Germany had been included in the experiment.  



 

 

 

Figure H.4. Comparison of posterior SD estimates for UH and non-UH cases between the full and reduced 
models for mathematics, reading, and science (before transformation to the PISA scale) 
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